cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253946 a(n) = 6*binomial(n+1, 6).

Original entry on oeis.org

6, 42, 168, 504, 1260, 2772, 5544, 10296, 18018, 30030, 48048, 74256, 111384, 162792, 232560, 325584, 447678, 605682, 807576, 1062600, 1381380, 1776060, 2260440, 2850120, 3562650, 4417686, 5437152, 6645408, 8069424, 9738960, 11686752, 13948704, 16564086
Offset: 5

Views

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1, 2, ..., n}, a(n) is the sum of the 3 smallest elements of each subset with 5 elements, which is 6*C(n+1, 6) (for n >= 5), hence a(n) = 6*C(n+1, 6) = 6 * A000579(n+1).

Examples

			For A = {1, 2, 3, 4, 5, 6} the subsets with 5 elements are {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}.
The sum of 3 smallest elements of each subset: a(6) = (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 4) + (1 + 3 + 4) + (2 + 3 + 4) = 42 = 6*C(6 + 1, 6) = 6*A000579(6+1).
		

Crossrefs

Cf. A000579.
Sixth column of A003506.

Programs

  • Magma
    [6*Binomial(n+1, 6): n in [5..40]]; // Vincenzo Librandi, Feb 13 2015
    
  • Maple
    A253946:=n->6*binomial(n+1,6): seq(A253946(n), n=5..50); # Wesley Ivan Hurt, Feb 13 2015
  • Mathematica
    Drop[Plus @@ Flatten[Part[#, 1 ;; 3] & /@ Subsets[Range@ #, {5}]] & /@
      Range@ 30, 4] (* Michael De Vlieger, Jan 20 2015 *)
    6Binomial[Range[6, 29], 6] (* Alonso del Arte, Feb 05 2015 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{6,42,168,504,1260,2772,5544},40] (* Harvey P. Dale, May 14 2019 *)
  • PARI
    Vec(6*x^5/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 03 2015

Formula

a(n) = 6*C(n+1,6) = 6*A000579(n+1).
G.f.: 6*x^5 / (1-x)^7. - Colin Barker, Apr 03 2015
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=5} 1/a(n) = 1/5.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32*log(2) - 661/30. (End)

Extensions

More terms from Vincenzo Librandi, Feb 13 2015