cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254636 Numbers that cannot be represented as x*y + x + y, where x>=y>1.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 16, 18, 21, 22, 25, 28, 30, 33, 36, 37, 40, 42, 45, 46, 52, 57, 58, 60, 61, 66, 70, 72, 73, 78, 81, 82, 85, 88, 93, 96, 100, 102, 105, 106, 108, 112, 117, 121, 126, 130, 133, 136, 138, 141, 145, 148, 150, 156, 157, 162, 165, 166, 172
Offset: 1

Views

Author

Alex Ratushnyak, Feb 03 2015

Keywords

Comments

0, 7 and numbers n such that n+1 is either prime or twice a prime. - Robert Israel, Aug 05 2015

Crossrefs

Cf. A091529 (appears to be essentially the same, except first few terms).
Cf. A253975.

Programs

  • Maple
    sort([0,7, op(select(t -> isprime(t+1), [$1..10^4])), op(select(t -> isprime((t+1)/2),[2*i+1$i=1..5*10^3]))]); # Robert Israel, Aug 05 2015
  • Mathematica
    r[n_] := Reduce[x >= y > 1 && n == x y + x + y, {x, y}, Integers];
    Reap[For[n = 0, n <= 200, n++, If[r[n] === False, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 28 2019 *)
  • Python
    from sympy import primepi
    def A254636(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n-1+x-(x>=7)-primepi(x+1)-primepi(x+1>>1))
        return bisection(f,n-1,n-1) # Chai Wah Wu, Oct 14 2024

A255361 Number of ways n can be represented as x*y+x+y where x>=y>1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 3, 0, 0, 1, 2, 0, 2, 0, 1, 2, 0, 0, 3, 1, 1, 1, 1, 0, 2, 1, 2, 1, 0, 0, 4, 0, 0, 2, 2, 1, 2, 0, 1, 1, 2, 0, 4, 0, 0, 2, 1, 1, 2, 0, 3, 2, 0, 0, 4, 1, 0, 1, 2, 0, 4, 1, 1, 1, 0, 1, 4, 0, 1, 2, 3, 0, 2, 0, 2, 3, 0
Offset: 0

Views

Author

Alex Ratushnyak, Feb 21 2015

Keywords

Examples

			8 = 2*2 + 2 + 2, this is the only representation, so a(8)=1.
23 = 2*7 + 2 + 7 = 3*5 + 3 + 5, two representations, so a(23)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (r = Reduce[x >= y > 1 && n == x*y + x + y, {x, y}, Integers]; Which[r[[0]] === And, 1, r[[0]] === Or, Length[r], True, 0]);
    Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Jan 23 2018 *)
  • PARI
    a(n) = {nb = 0; for (y=2, n\2, for (x=y, n\2, nb += ((x*y+x+y) == n););); nb;} \\ Michel Marcus, Feb 22 2015
  • Python
    TOP = 1000
    a = [0]*TOP
    for y in range(2, TOP//2):
        for x in range(y, TOP//2):
            k = x*y + x + y
            if k>=TOP: break
            a[k]+=1
    print(a)
    
  • Python
    from sympy import divisor_count
    def A255361(n): return int((divisor_count(n+1)-1>>1)-(n&1)) if n!=1 else 0 # Chai Wah Wu, Oct 15 2024
    

Formula

Let d = A000005; then a(n) = floor((d(n+1) - 1)/2) for even n and a(n) = floor((d(n+1) - 3) / 2) for odd n>1. - Ivan Neretin, Sep 07 2015

Extensions

More terms from Antti Karttunen, Sep 22 2017
Showing 1-2 of 2 results.