cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254708 Expansion of (1 + 2*x^2) / (1 - 2*x^2 - x^3 + 2*x^5 + 2*x^6 - x^8 - 2*x^9 + x^11) in powers of x.

Original entry on oeis.org

2, 0, 5, 2, 10, 5, 18, 10, 29, 18, 43, 29, 62, 43, 85, 62, 113, 85, 147, 113, 187, 147, 233, 187, 287, 233, 348, 287, 417, 348, 495, 417, 582, 495, 678, 582, 785, 678, 902, 785, 1030, 902, 1170, 1030, 1322, 1170, 1486, 1322, 1664, 1486, 1855, 1664, 2060, 1855
Offset: 0

Views

Author

Michael Somos, Feb 06 2015

Keywords

Comments

The number of quadruples of integers [x, u, v, w] which satisfy x > u > v > w >=0, n+7 = x+u, (u+v < x+w and x+u+v+w is even) or (u+v > x+w and x+u+v+w is odd).

Examples

			G.f. = 2 + 5*x^2 + 2*x^3 + 10*x^4 + 5*x^5 + 18*x^6 + 10*x^7 + 29*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2 + x^2)/(1-2*x^2-x^3+2*x^5+2*x^6-x^8-2*x^9+x^11))); // G. C. Greubel, Aug 03 2018
  • Mathematica
    a[ n_] := Quotient[ n^3 + If[ OddQ[n], 10 n^2 + 21 n + 12, 19 n^2 + 108 n + 192], 96];
    a[ n_] := Module[{m = n}, SeriesCoefficient[ If[ n < 0, m = -9 - n; -1 - 2 x^2, 2 + x^2]/ ((1 - x^2)^2 (1 - x^3) (1 - x^4)), {x, 0, m}]];
    a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 7, (u + v < x + w && x + u + v + w == 2 k) || (u + v > x + w && x + u + v + w == 2 k + 1)}, {x, u, v, w, k}, Integers, 10^9];
    CoefficientList[Series[(2 + x^2)/(1 - 2*x^2 - x^3 + 2*x^5 + 2*x^6 - x^8 - 2*x^9 + x^11), {x,0,50}], x] (* G. C. Greubel, Apr 14 2017 *)
    LinearRecurrence[{0,2,1,0,-2,-2,0,1,2,0,-1},{2,0,5,2,10,5,18,10,29,18,43},60] (* Harvey P. Dale, Mar 13 2023 *)
  • PARI
    {a(n) = (n^3 + if( n%2, 10*n^2 + 21*n + 12, 19*n^2 + 108*n + 192)) \ 96};
    
  • PARI
    {a(n) = polcoeff( if( n<0, n = -9-n; -1 - 2*x^2, 2 + x^2) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};
    

Formula

G.f.: (2 + x^2) / (1 - 2*x^2 - x^3 + 2*x^5 + 2*x^6 - x^8 - 2*x^9 + x^11).
0 = a(n) + a(n+1) - a(n+2) - 2*a(n+3) - 2*a(n+4) + 2*a(n+6) + 2*a(n+7) + a(n+8) - a(n+9) - a(n+10) + 3 for all n in Z.
a(n+3) - a(n) = 0 if n even else A001859((n+5)/2) for all n in Z.
a(n) = A254594(n-2) + 2*A254594(n) for all n in Z.
a(n) = -A254707(-9 - n) for all n in Z.