cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A254707 Expansion of (1 + 2*x^2) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, 0, 4, 1, 8, 4, 15, 8, 25, 15, 38, 25, 55, 38, 77, 55, 103, 77, 135, 103, 173, 135, 217, 173, 268, 217, 327, 268, 393, 327, 468, 393, 552, 468, 645, 552, 748, 645, 862, 748, 986, 862, 1122, 986, 1270, 1122, 1430, 1270, 1603, 1430, 1790, 1603, 1990, 1790
Offset: 0

Views

Author

Michael Somos, Feb 06 2015

Keywords

Comments

The number of quadruples of integers [x, u, v, w] which satisfy x > u > v > w >=0, n+7 = x+u, u+v != x+w, and x+u+v+w is even.

Examples

			G.f. = 1 + 4*x^2 + x^3 + 8*x^4 + 4*x^5 + 15*x^6 + 8*x^7 + 25*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Quotient[ n^3 + If[ OddQ[n], 8 n^2 + 9 n + 18, 17 n^2 + 84 n + 148], 96];
    a[ n_] := Module[{m = n}, SeriesCoefficient[ If[ n < 0, m = -9 - n; -2 - x^2, 1 + 2 x^2] / ((1 - x^2)^2 (1 - x^3) (1 - x^4)), {x, 0, m}]];
    a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 7, u + v != x + w, x + u + v + w == 2 k}, {x, u, v, w, k}, Integers, 10^9];
  • PARI
    {a(n) = (n^3 + if( n%2, 8*n^2 + 9*n + 18, 17*n^2 + 84*n + 148)) \ 96};
    
  • PARI
    {a(n) = polcoeff( if( n<0, n = -9-n; -2 - x^2, 1 + 2*x^2) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};

Formula

G.f.: (1 + 2*x^2) / (1 - 2*x^2 - x^3 + 2*x^5 + 2*x^6 - x^8 - 2*x^9 + x^11).
0 = a(n) + a(n+1) - a(n+2) - 2*a(n+3) - 2*a(n+4) + 2*a(n+6) + 2*a(n+7) + a(n+8) - a(n+9) - a(n+10) + 3 for all n in Z.
a(n+3) - a(n) = 0 if n even else A006578((n+5)/2) for all n in Z.
a(n+2) = 2*A254594(n) + A254594(n+2) for all n in Z.
a(n) = -A254708(-9 - n) for all n in Z.

A254745 Chebyshev polynomials of the second kind, U(n,x)^2, evaluated at x = sqrt(3)/2.

Original entry on oeis.org

1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4
Offset: 0

Views

Author

Michael Somos, Feb 07 2015

Keywords

Comments

Period 6: repeat [1, 3, 4, 3, 1, 0].

Examples

			G.f. = 1 + 3*x + 4*x^2 + 3*x^3 + x^4 + x^6 + 3*x^7 + 4*x^8 + 3*x^9 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)/((1-x)*(1-x+x^2)))); // G. C. Greubel, Aug 03 2018
  • Mathematica
    a[ n_] := {3, 4, 3, 1, 0, 1}[[Mod[n, 6, 1]]];
    a[ n_] := ChebyshevU[ n, Sqrt[3] / 2]^2;
    CoefficientList[Series[(1 + x) / ((1 - x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Jul 14 2017 *)
  • PARI
    {a(n) = [1, 3, 4, 3, 1, 0][n%6 + 1]};
    
  • PARI
    {a(n) = simplify( polchebyshev( n, 2, quadgen(12) / 2)^2)};
    

Formula

Euler transform of length 6 sequence [3, -2, -1, 0, 0, 1].
G.f.: (1 + x) / ((1 - x) * (1 - x + x^2)) = (1 - x^2)^2 * (1 - x^3) / ((1 - x)^3 * (1 - x^6)).
a(n) = a(-2-n) = a(n+6) for all n in Z.
a(n) = (-1)^n*A078070(n) = A131027(n-1) for all n in Z.
a(n) = (n+1)*(Sum_{k=0..n} (-1)^k/(k+1)*binomial(n+k+1,2*k+1)) for n >= 0. - Werner Schulte, Jul 10 2017
Sum_{n>=0} a(n)/(n+1)*x^(n+1) = log(1-x+x^2)-2*log(1-x) for -1 < x < 1. - Werner Schulte, Jul 10 2017
a(n) = sqrt(3)*sin(Pi*n/3) - cos(Pi*n/3) + 2. - Peter Luschny, Jul 16 2017
a(n) = 2 + 2*cos(Pi/3*(n+4)) for n >= 0. - Werner Schulte, Jul 18 2017

A251260 Expansion of (1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, 2, 3, 6, 8, 13, 16, 24, 28, 40, 45, 61, 68, 89, 97, 124, 134, 167, 179, 219, 233, 281, 297, 353, 372, 437, 458, 533, 557, 642, 669, 765, 795, 903, 936, 1056, 1093, 1226, 1266, 1413, 1457, 1618, 1666, 1842, 1894, 2086, 2142, 2350, 2411, 2636, 2701, 2944
Offset: 0

Views

Author

Michael Somos, Mar 20 2015

Keywords

Examples

			G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 8*x^4 + 13*x^5 + 16*x^6 + 24*x^7 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + 2*x+x^2+x^3)/((1-x^2)^2*(1-x^3)*(1-x^4)))); // G. C. Greubel, Aug 03 2018
  • Mathematica
    a[ n_] := Quotient[ 5 n^3 + If[ OddQ[n], 66 n^2 + 249 n, 57 n^2 + 204 n] + 288, 288];
    a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 6, (u + v < x + w && k == 0) || (u + v > x + w && x + u + v + w == 2 k + 1)}, {x, u, v, w, k}, Integers, 10^9];
    LinearRecurrence[{0,2,1,0,-2,-2,0,1,2,0,-1},{1,2,3,6,8,13,16,24,28,40,45},60] (* Harvey P. Dale, Jul 16 2025 *)
  • PARI
    {a(n) = (5*n^3 + if( n%2, 66*n^2 + 249*n, 57*n^2 + 204*n) + 288) \ 288};
    
  • PARI
    {a(n) = polcoeff( if( n<0, n = -8-n; -(1 + x + 2*x^2 + x^3), 1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};
    

Formula

a(n) = A165188(n+1) + A254708(n-1) = A254594(n-1) + A008763(n+4) for all n in Z.
0 = a(n) - 2*a(n+2) - a(n+3) + 2*a(n+5) + 2*a(n+6) - a(n+8) - 2*a(n+9) + a(n+11) for all n in Z.
a(2*n) = A254875(n) for all n in Z.
G.f.: (1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)).
Showing 1-3 of 3 results.