cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133285 Indices of the centered 12-gonal numbers which are also 12-gonal number, or numbers X such that 120*X^2-120*X+36 is a square.

Original entry on oeis.org

1, 12, 253, 5544, 121705, 2671956, 58661317, 1287877008, 28274632849, 620754045660, 13628314371661, 299202162130872, 6568819252507513, 144214821393034404, 3166157251394249365, 69511244709280451616
Offset: 1

Views

Author

Richard Choulet, Oct 16 2007

Keywords

Comments

Partial sums of A077422. - R. J. Mathar, Nov 27 2011
Indices of centered pentagonal numbers (A005891) which are also centered hexagonal numbers (A003215). - Colin Barker, Feb 07 2015

Crossrefs

Programs

Formula

a(n+2) = 22*a(n+1)-a(n)-10 ; a(n+1)=11*a(n)-5+(120*a(n)^2-120*a(n)+36)^0.5
G.f. x*(-1+11*x) / ( (x-1)*(x^2-22*x+1) ). - R. J. Mathar, Nov 27 2011

Extensions

More terms from Paolo P. Lava, Aug 06 2008

A133141 Numbers which are both centered pentagonal (A005891) and centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 331, 159391, 76825981, 37029963301, 17848365484951, 8602875133782931, 4146567966117887641, 1998637156793688059881, 963338963006591526974851, 464327381532020322313818151, 223804834559470788763733373781
Offset: 1

Views

Author

Richard Choulet, Sep 21 2007

Keywords

Comments

The problem is to find p and r such that 6*(2*p-1)^2 = 5*(2*r+1)^2 + 1 equivalent to 3*p^2 - 3*p + 1 = (5*r^2 + 5*r + 2)/2. The Diophantine equation (6*X)^2 = 30*Y^2 + 6 is such that
X is given by 1, 21, 461, 10121, ... with a(n+2) = 22*a(n+1) - a(n) and also a(n+1) = 11*a(n) + sqrt(120*a(n)^2 - 20);
Y is given by 1, 23, 805, 11087, ... with a(n+2) = 22*a(n+1) - a(n) and also a(n+1) = 11*a(n) + sqrt(120*a(n)^2+24);
r is given by 0, 11, 252, 5543, 121704, ... with a(n+2) = 22*a(n+1) - a(n) + 10 and also a(n+1) = 11*a(n) + 5 + sqrt(120*a(n)^2 + 120*a(n) + 36);
p is given by 1, 11, 231, 5061, ... with a(n+2) = 22*a(n+1) - a(n) - 10 and also a(n+1) = 11*a(n) - 5 + sqrt(120*a(n)^2 - 120*a(n) + 25).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{483,-483,1},{1,331,159391},20] (* Paolo Xausa, Jan 07 2024 *)
  • PARI
    Vec(-x*(x^2-152*x+1)/((x-1)*(x^2-482*x+1)) + O(x^100)) \\ Colin Barker, Feb 07 2015

Formula

a(n+2) = 482*a(n+1) - a(n) - 150.
a(n+1) = 241*a(n) - 75 + 11*sqrt(480*a(n)^2 - 300*a(n) + 45).
G.f.: z*(1-152*z+z^2)/((1-z)*(1-482*z+z^2)).

Extensions

More terms from Paolo P. Lava, Sep 26 2008
Showing 1-2 of 2 results.