cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A212336 Expansion of 1/(1 - 23*x + 23*x^2 - x^3).

Original entry on oeis.org

1, 23, 506, 11110, 243915, 5355021, 117566548, 2581109036, 56666832245, 1244089200355, 27313295575566, 599648413462098, 13164951800590591, 289029291199530905, 6345479454589089320, 139311518709760434136, 3058507932160140461673
Offset: 0

Views

Author

Bruno Berselli, Jun 08 2012

Keywords

Comments

Partial sums of A077421.

Crossrefs

Sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3): A334673 (k=24), A212336 (k=23), A212335 (k=22), A097833 (k=21), A097832 (k=20), A049664 (k=19), A097831-A097829 (k=18,17,16), A076139 (k=15), A097828-A097826 (k=14,13,12), A097784 (k=11), A092420 (k=10), A076765 (k=9), A092521 (k=8), A053142 (k=7), A089817(k=6), A061278 (k=5), A027941 (k=4), A000217 (k=3), A021823 (k=2), A133872 (k=1), A079978 (k=0).

Programs

  • Magma
    m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-23*x+23*x^2-x^3)));
    
  • Magma
    I:=[1,23,506]; [n le 3 select I[n] else 23*Self(n-1)-23*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-23|23>>^n. <<1, 23, 506>>)[1, 1]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 15 2012
  • Mathematica
    CoefficientList[Series[1/(1 - 23 x + 23 x^2 - x^3), {x, 0, 16}], x]
    LinearRecurrence[{23, -23, 1}, {1, 23, 506}, 20] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(coeff(taylor(1/(1-23*x+23*x^2-x^3), x, 0, n), x, n), n, 0, 16);
    
  • PARI
    Vec(1/(1-23*x+23*x^2-x^3)+O(x^17))
    
  • Sage
    [(1/20)*(-1 +21*chebyshev_U(n, 11) -chebyshev_U(n-1, 11)) for n in (0..30)] # G. C. Greubel, Feb 07 2022

Formula

G.f.: 1/((1-x)*(1 - 22*x + x^2)).
a(n) = (((6+sqrt(30))^(2*n+3) + (6-sqrt(30))^(2*n+3))/6^(n+1) - 12)/240.
a(n) = a(-n-3) = 23*a(n-1) - 23*a(n-2) + a(n-3).
a(n)*a(n+2) = a(n+1)*(a(n+1)-1).
a(n+1) - 11*a(n) = A133285(n+2).
11*a(n+1) - a(n) = (1/5)*A157096(n+2).
a(n) = (1/20)*(-1 + 21*ChebyshevU(n, 11) - ChebyshevU(n-1, 11)). - G. C. Greubel, Feb 07 2022

A133141 Numbers which are both centered pentagonal (A005891) and centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 331, 159391, 76825981, 37029963301, 17848365484951, 8602875133782931, 4146567966117887641, 1998637156793688059881, 963338963006591526974851, 464327381532020322313818151, 223804834559470788763733373781
Offset: 1

Views

Author

Richard Choulet, Sep 21 2007

Keywords

Comments

The problem is to find p and r such that 6*(2*p-1)^2 = 5*(2*r+1)^2 + 1 equivalent to 3*p^2 - 3*p + 1 = (5*r^2 + 5*r + 2)/2. The Diophantine equation (6*X)^2 = 30*Y^2 + 6 is such that
X is given by 1, 21, 461, 10121, ... with a(n+2) = 22*a(n+1) - a(n) and also a(n+1) = 11*a(n) + sqrt(120*a(n)^2 - 20);
Y is given by 1, 23, 805, 11087, ... with a(n+2) = 22*a(n+1) - a(n) and also a(n+1) = 11*a(n) + sqrt(120*a(n)^2+24);
r is given by 0, 11, 252, 5543, 121704, ... with a(n+2) = 22*a(n+1) - a(n) + 10 and also a(n+1) = 11*a(n) + 5 + sqrt(120*a(n)^2 + 120*a(n) + 36);
p is given by 1, 11, 231, 5061, ... with a(n+2) = 22*a(n+1) - a(n) - 10 and also a(n+1) = 11*a(n) - 5 + sqrt(120*a(n)^2 - 120*a(n) + 25).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{483,-483,1},{1,331,159391},20] (* Paolo Xausa, Jan 07 2024 *)
  • PARI
    Vec(-x*(x^2-152*x+1)/((x-1)*(x^2-482*x+1)) + O(x^100)) \\ Colin Barker, Feb 07 2015

Formula

a(n+2) = 482*a(n+1) - a(n) - 150.
a(n+1) = 241*a(n) - 75 + 11*sqrt(480*a(n)^2 - 300*a(n) + 45).
G.f.: z*(1-152*z+z^2)/((1-z)*(1-482*z+z^2)).

Extensions

More terms from Paolo P. Lava, Sep 26 2008

A254782 Indices of centered hexagonal numbers (A003215) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 11, 231, 5061, 111101, 2439151, 53550211, 1175665481, 25811090361, 566668322451, 12440892003551, 273132955755661, 5996484134620981, 131649518005905911, 2890292911995309051, 63454794545890893201, 1393115187097604341361, 30585079321601404616731
Offset: 1

Views

Author

Colin Barker, Feb 07 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 6*y^2 - 5*x + 6*y = 0, the corresponding values of x being A133285.
The numbers (as opposed to the indices) are A133141.

Examples

			11 is in the sequence because the 11th centered hexagonal number is 331, which is also the 12th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{23,-23,1},{1,11,231},20] (* Harvey P. Dale, Mar 01 2022 *)
  • PARI
    Vec(-x*(x^2-12*x+1)/((x-1)*(x^2-22*x+1)) + O(x^100))

Formula

a(n) = 23*a(n-1)-23*a(n-2)+a(n-3).
G.f.: -x*(x^2-12*x+1) / ((x-1)*(x^2-22*x+1)).
a(n) = 1/2+1/24*(11+2*sqrt(30))^(-n)*(6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n)). - Colin Barker, Mar 03 2016
Showing 1-3 of 3 results.