A255047 1 together with the positive terms of A000225.
1, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- R. Stanley, Parking Functions, 2011.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
[1] cat [2^n -1: n in [1..40]]; // G. C. Greubel, Feb 07 2021
-
Mathematica
CoefficientList[Series[(1 -2*x +2*x^2)/((1-x)*(1-2*x)), {x, 0, 33}], x] (* or *) LinearRecurrence[{3, -2}, {1,1,3}, 40] (* Vincenzo Librandi, Jul 20 2017 *) Table[2^n -1 +Boole[n==0], {n, 0, 40}] (* G. C. Greubel, Feb 07 2021 *)
-
Python
def A255047(n): return -1^(-1<
Chai Wah Wu, Dec 21 2022 -
Sage
[1]+[2^n -1 for n in (1..40)] # G. C. Greubel, Feb 07 2021
Formula
From Alois P. Heinz, Feb 19 2015: (Start)
O.g.f.: (1 -2*x +2*x^2)/((1-x)*(1-2*x)).
E.g.f.: exp(2*x) - exp(x) + 1. (End)
a(n) = A078485(n+1) for n > 2. - Georg Fischer, Oct 22 2018
Comments