A255176 a(n) = H_n(2,2) where H_n is the n-th hyperoperator.
3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0
Examples
a(0) = H_0(2,2) = 2+1 = 3. a(1) = H_1(2,2) = 2+2 = 4. a(2) = H_2(2,2) = 2*2 = 4. a(3) = H_3(2,2) = 2^2 = 4. a(n) = H_n(2,2) = H_{n-1}(2,H_n(2,1)) = H_{n-1}(2,2) = 4, for n>1.
References
- Julien Freslon & Jérôme Poineau, Les 100 exercices-types de mathématiques: MPSI/PCSI/PTSI, EdiScience, 2007, Exercice 11.2, page 242.
Links
- Wikipedia, Hyperoperation.
- Index entries for linear recurrences with constant coefficients, signature (1).
Formula
G.f.: (3 + x)/(1 - x). - Bruno Berselli, Mar 18 2015
a(n) = 10^(10^n) mod 7. - Bernard Schott, Aug 28 2020
Extensions
Edited by Danny Rorabaugh, Oct 20 2015
Comments