A054871 a(n) = H_n(3,2) where H_n is the n-th hyperoperator.
3, 5, 6, 9, 27, 7625597484987
Offset: 0
Keywords
Examples
a(0) = H_0(3,2) = 2+1 = 3; a(1) = H_1(3,2) = 3+2 = 5; a(2) = H_2(3,2) = 3*2 = 3+3 = 6; a(3) = H_3(3,2) = 3^2 = 3*3 = 9; a(4) = H_4(3,2) = 3^^2 = 3^3 = 27; a(5) = H_5(3,2) = 3^^^2 = 3^^3 = 3^(3^3) = 7625597484987.
References
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 60.
Links
- Rick Norwood, Math. Bite: Why 2 + 2 = 2 * 2, Mathematics Magazine, Vol. 71 (1998), p. 60.
- Stephen R. Wassell, Superexponentiation and Fixed Points of Exponential and Logarithmic Functions, Mathematics Magazine, Vol. 73 (2000), pp. 111-119.
- Eric Weisstein's MathWorld, Ackermann Function and Power Tower
- Wikipedia, Hyperoperation
- Index Section Ho-Hy
Crossrefs
H_n(x,y) for various x,y: A001695 (2,n), this sequence (3,2; almost 3,3), A067652 (2,3; almost 2,4), A141044 (1,1), A175796 (n,2), A179184 (0,0), A189896 (n,n), A213619 (n,H_n(n,n)), A253855 (4,2; almost 4,4), A255176 (2,2), A255340 (4,3), A256131 (10,2; almost 10,10), A261143 (1,2), A261146 (n,3). - Natan Arie Consigli and Danny Rorabaugh, Oct 14-26 2015
Extensions
First two terms prepended by Natan Arie Consigli, Apr 22 2015
First term corrected and hyperoperator notation implemented by Danny Rorabaugh, Oct 14 2015
Definition extended to include negative n by Natan Arie Consigli, Oct 19 2015
More hyperoperator notation added by Natan Arie Consigli, Jan 19 2016
Comments