cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255245 Numbers that divide the average of the squares of their aliquot parts.

Original entry on oeis.org

10, 65, 140, 420, 2100, 2210, 20737, 32045, 200725, 207370, 1204350, 1347905, 1762645, 16502850, 31427800, 37741340, 107671200, 130643100, 200728169, 239719720, 357491225, 417225900, 430085380, 766750575, 1088692500, 1132409168, 1328204850, 1788379460
Offset: 1

Views

Author

Paolo P. Lava, Feb 20 2015

Keywords

Comments

Ratio: 1, 1, 5, 10, 78, 1, 109, 565,...
If the ratio is equal to 1 we have 10, 65, 20737 (A140362).

Examples

			Aliquot parts of 10 are 1, 2, 5. The average of their squares is (1^2 + 2^2 + 5^2) / 3 = (1 + 4 + 25) / 3 = 30 / 3 = 10 and 10 / 10 = 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,k,n;
    for n from 2 to q do a:=sort([op(divisors(n))]);
    b:=add(a[k]^2,k=1..nops(a)-1)/(nops(a)-1);
    if type(b/n,integer) then lprint(n);
    fi; od; end: P(10^6);
  • Mathematica
    Select[Range[10^6],Mod[Mean[Most[Divisors[#]^2]],#]==0&] (* Ivan N. Ianakiev, Mar 03 2015 *)
  • PARI
    isok(n) = (q=(sumdiv(n, d, (d!=n)*d^2)/(numdiv(n)-1))) && (type(q)=="t_INT") && ((q % n) == 0); \\ Michel Marcus, Feb 20 2015
    
  • Python
    from _future_ import division
    from sympy import factorint
    A255245_list = []
    for n in range(2,10**9):
        s0 = s2 = 1
        for p,e in factorint(n).items():
            s0 *= e+1
            s2 *= (p**(2*(e+1))-1)//(p**2-1)
        q, r = divmod(s2-n**2,s0-1)
        if not (r or q % n):
            A255245_list.append(n) # Chai Wah Wu, Mar 08 2015

Extensions

More terms from Michel Marcus, Feb 20 2015
a(17)-a(24) from Chai Wah Wu, Mar 08 2015
a(25)-a(28) from Giovanni Resta, May 30 2016