cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A255267 Numbers representable as both x*y*(x+y) and b*c+b+c, where b>=c>1 and x>=y>1.

Original entry on oeis.org

48, 54, 84, 120, 128, 160, 264, 286, 308, 324, 384, 390, 468, 510, 560, 624, 686, 714, 720, 798, 840, 884, 912, 960, 1024, 1056, 1134, 1140, 1190, 1224, 1254, 1280, 1330, 1350, 1386, 1440, 1456, 1500, 1512, 1584, 1650, 1672, 1680, 1710, 1748, 1794, 1798, 1820, 1890
Offset: 1

Views

Author

Alex Ratushnyak, Feb 19 2015

Keywords

Comments

Intersection of A254671 and A255265.
The subsequence of squares begins: 324, 1024, 2500, 3600, 11664, 19600, 20736, 36864, 63504, 82944, 129600, 153664, 230400, 236196, 250000, 291600, 345744, 419904, 777924, 810000, 944784.

Examples

			a(3) = 84 = 4*3*(4+3) = 16*4 + 16 + 4.
		

Crossrefs

Programs

  • PARI
    \\ See Corneth link
  • Python
    TOP = 100000
    a = [0]*TOP
    b = [0]*TOP
    for y in range(2,TOP//2):
      for x in range(y,TOP//2):
        k = x*y*(x+y)
        if k>=TOP: break
        a[k]+=1
    for y in range(2,TOP//2):
      for x in range(y,TOP//2):
        k = x*y+(x+y)
        if k>=TOP: break
        b[k]+=1
    print([n for n in range(TOP) if a[n]>0 and b[n]>0])
    

A255804 Numbers representable as x*y*(x+y), b*c+b+c, and d^e+d+e, where d>1, e>1, b>=c>1 and x>=y>1.

Original entry on oeis.org

264, 308, 8192, 16400, 88508, 236684, 504812, 12127808, 22491308, 82310258, 227240552, 385278014, 1069061114, 2363758544, 2591166314, 2985365684, 3310448834, 4042988642, 4791339182, 5712714308, 7553782658, 8626601522, 12494656622, 14498688512, 15165306758, 15445891244
Offset: 1

Views

Author

Alex Ratushnyak, Mar 07 2015

Keywords

Comments

Intersection of A253775, A254671, A255265.

Examples

			a(2) = 308 = 17^2 + 17 + 2 = 7 * 4 * (7 + 4) = 102 * 2 + 102 + 2.
		

Crossrefs

Programs

  • PARI
    \\ See Corneth link
  • Python
    TOP = 100000000
    a = [0]*TOP
    c = []
    for y in range(2, TOP//2):
      if 2**y + 2 + y >= TOP: break
      for x in range(2, TOP//2):
        k = x**y+(x+y)
        if k>=TOP: break
        c.append(k)
    for y in range(2, TOP//2):
      if 2*y*y*y >= TOP: break
      for x in range(y, TOP//2):
        k = x*y*(x+y)
        if k>=TOP: break
        a[k]=1
    for y in range(2, TOP//2):
      if y*(y+2) >= TOP: break
      for x in range(y, TOP//2):
        k = x*y+(x+y)
        if k>=TOP: break
        a[k]|=2
        # if a[k]==3 and (k in c): print(k, end=', ')
    print([n for n in range(TOP) if a[n]==3 and (n in c)])
    

Extensions

More terms from David A. Corneth, Oct 18 2024

A277980 a(n) = 12*n^2 + 18*n.

Original entry on oeis.org

0, 30, 84, 162, 264, 390, 540, 714, 912, 1134, 1380, 1650, 1944, 2262, 2604, 2970, 3360, 3774, 4212, 4674, 5160, 5670, 6204, 6762, 7344, 7950, 8580, 9234, 9912, 10614, 11340, 12090, 12864, 13662, 14484, 15330, 16200, 17094, 18012, 18954, 19920
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2016

Keywords

Comments

For n>=3, a(n) is the second Zagreb index of the double-wheel graph DW[n]. The second Zagreb index of a simple connected graph g is the sum of the degree products d(i) d(j) over all edges ij of g.
The double-wheel graph DW[n] consists of two cycles C[n], whose vertices are connected to an additional vertex.
The M-polynomial of the double-wheel graph DW[n] is M(DW[n],x,y) = 2*n*x^3*y^3 + 2*n*x^3*y^{2*n}.

Examples

			a(3) = 162. Indeed, the double-wheel graph DW[3] has 6 edges with end-point degrees 3,3 and 6 edges with end-point degrees 3,6. Then the second Zagreb index is 6*9 + 6*18 = 162.
		

Crossrefs

First bisection of A277978.
After 0, subsequence of A255265.

Programs

Formula

G.f.: 6*x*(5-x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 6*A014106(n).
a(n) = A152746(n+1) - 6 = A154105(n) - 7. - Omar E. Pol, May 08 2018

A255266 Numbers representable in more than one way as x*y*(x+y), where x>=y>1.

Original entry on oeis.org

240, 390, 810, 880, 1008, 1020, 1680, 1920, 2100, 2310, 2970, 3120, 3360, 3696, 3750, 4320, 4914, 5460, 5670, 6090, 6270, 6480, 6630, 7040, 7380, 7440, 7770, 8064, 8160, 8190, 8448, 8580, 8976, 9240, 9520, 10290, 10530, 10640, 11340, 11856, 12474, 13440, 13776, 14040
Offset: 1

Views

Author

Alex Ratushnyak, Feb 19 2015

Keywords

Examples

			a(3) = 810 = 15*3*(15+3) = 9*6*(9+6).
		

Crossrefs

Programs

  • Python
    TOP = 100000
    a = [0]*TOP
    for y in range(2, TOP//2):
      for x in range(y, TOP//2):
        k = x*y*(x+y)
        if k>=TOP: break
        a[k]+=1
    print([n for n in range(TOP) if a[n]>1])

A376641 a(n) is the first positive integer that has exactly n representations as x * y * (x + y) where x >= y > 1.

Original entry on oeis.org

1, 16, 240, 1680, 23760, 18480, 498960, 24386670, 3991680, 57805440, 618068880, 195093360, 4944551040, 1560746880, 12485975040, 99887800320, 2696970608640, 195093360000, 1560746880000, 5267520720000
Offset: 0

Views

Author

Robert Israel, Sep 30 2024

Keywords

Examples

			a(1) = 16 =  2 * 2 * (2 + 2).
a(2) = 240 = 10 * 2 * (10 + 2)
           = 6 * 4 * (6 + 4).
a(3) = 1680 = 28 * 2 * (28 + 2)
            = 16 * 5 * (16 + 5)
            = 14 * 6 * (14 + 6).
a(4) = 23760 = 108 * 2 * (108 + 2)
           =  60 * 6 * (60 + 6)
           =  44 * 10 * (44 + 10)
           =  33 * 15 * (33 + 15).
		

Crossrefs

Cf. A255265.

Programs

  • Maple
    N:= 10^8: # for terms <= N
    V:= Vector(N,datatype=integer[1]):
    for y from 2 to floor((N/2)^(1/3)) do
      for x from y do
        v:= x*y *(x+y);
        if v > N then break fi;
        V[v]:= V[v]+1
    od od:
    m:= max(V): R:= Array(0..m): count:= 0:
    for i from 1 to N while count < m+1 do
      v:= V[i];
      if R[v] = 0 then R[v]:= i; count:= count+1 fi
    od:
    convert(R,list);

Extensions

a(12)-a(19) from Chai Wah Wu, Oct 01 2024

A382953 Numbers with at least one factorization for which the factors can be partitioned into 2 or more distinct subsets with equal sums.

Original entry on oeis.org

16, 30, 48, 54, 64, 70, 72, 84, 96, 120, 126, 128, 144, 160, 162, 180, 192, 198, 210, 216, 240, 243, 250, 252, 256, 264, 270, 280, 286, 288, 300, 308, 320, 324, 330, 336, 360, 378, 384, 390, 396, 400, 420, 432, 440, 448, 462, 468, 480, 486, 495, 504, 510, 512
Offset: 1

Views

Author

Charles L. Hohn, Apr 09 2025

Keywords

Comments

Here "distinct" means that no partition contains the same subset of factors, e.g. 4 is not a term because {2} == {2}.
Because 2 + 2 = 2 * 2 = 4, many terms have multiple instances that differ only by factors {2, 2} vs. {4}, except in some cases where such substitutions would create indistinct subsets, e.g. while 16 is a term for partition set {{2, 2}, {4}}, {{2, 2}, {2, 2}} and {{4}, {4}} do not count as additional instances.
For primes p and integers x >= 0, p^(p+2+2x) and p^(2p+3+x) are terms.
For integers x and y >= 0, (4x+4)^(y+2) and (4x+6)^(y+3) are terms.
First few terms with record counts of instances: 16 (1 instance), 48 (2), 120 (3), 240 (6), 576 (8), 720 (9), 768 (12).
If k is a term, then 4k is also a term. - Ivan N. Ianakiev, Apr 10 2025

Examples

			a(1) = 16: 2 * 2 * 4 = 16 and 2 + 2 = 4.
a(2) = 30: 2 * 3 * 5 = 30 and 2 + 3 = 5.
a(3) = 48: 2 * 2 * 2 * 6 = 48 and 2 + 2 + 2 = 6, and also 2 * 4 * 6 = 48 and 2 + 4 = 6.
a(5) = 64: 2 * 2 * 2 * 2 * 4 = 64 and 2 + 2 + 2 = 2 + 4.
a(39) = 384: 2 * 2 * 2 * 2 * 4 * 6 = 384 and 2 + 2 + 2 = 2 + 4 = 6 (plus 4 other instances).
		

Crossrefs

Cf. A083207, A322657, A255265 (subsequence).

Programs

  • Mathematica
    ok[n_]:=Catch@ Block[{t, d=Divisors@n,f}, f[y_]:=Block[{L={}, r}, r[x_,m_,c_]:= If[x==1, AppendTo[L,c], r[x/#, #, Append[c,#]]& /@ Select[ Divisors@x, #>=m&];]; f[y,2,{}]; L]; Do[t=Plus@@@ s[d[[i]]]; If[d[[i]]^2!=n, Intersection[t, Plus@@@ s[n/d[[i]]]] != {} && Throw@True, Sort@t != Union@t && Throw@True],{i, 2, Ceiling[ Length@d/2]}]; False]; Select[Range@ 512,ok] (* Giovanni Resta, Apr 10 2025 *)
  • PARI
    a382953_count(x, f=List())={my(r=x/if(#f, vecprod(Vec(f)), 1)); if(#f && r==1, my(c=0, s=vecsum(Vec(f)), d=divisors(s)); for(i=2, #d, my(z=s/d[i]); if(z1, next); listput(f, d); c+=a382953_count(x, f); listpop(f)); return(c)}
    a382953_part(f, z, rvs=0, v=List())={my(c=0); if(#v==#f[2], if(sum(i=1, #v, f[1][i]*v[i])
    				
Showing 1-6 of 6 results.