A255369 a(n) = (sigma(n)-n-1)*(2-mu(n)), where sigma(n) is the sum of the divisors of n and mu(n) is the Möbius function.
-1, 0, 0, 4, 0, 5, 0, 12, 6, 7, 0, 30, 0, 9, 8, 28, 0, 40, 0, 42, 10, 13, 0, 70, 10, 15, 24, 54, 0, 123, 0, 60, 14, 19, 12, 108, 0, 21, 16, 98, 0, 159, 0, 78, 64, 25, 0, 150, 14, 84, 20, 90, 0, 130, 16, 126, 22, 31, 0, 214, 0, 33, 80, 124, 18, 231, 0, 114
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Antti Karttunen, Sequence plotted up to n=10000, showing the details better
Crossrefs
Programs
-
Magma
[(SumOfDivisors(n)-n-1)*(2-MoebiusMu(n)): n in [1..80]]; // Vincenzo Librandi, May 05 2015
-
Maple
with(numtheory): a:=n->(sigma(n)-n-1)*(2-mobius(n)): seq(a(n), n=1..100);
-
Mathematica
Table[(DivisorSigma[1, n] - n - 1) (2 - MoebiusMu[n]), {n, 100}]
-
PARI
a(n)=(sigma(n)-n-1)*(2-moebius(n)) \\ Dana Jacobsen, May 13 2015
-
Perl
use ntheory ":all"; say +(divisor_sum($)-$-1)*(2-moebius($)) for 1..80; # _Dana Jacobsen, May 13 2015
Extensions
Formula corrected for case n=1 by Antti Karttunen, Feb 25 2018
Comments