cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A255635 Numbers n such that 1+16n^2, 1+16(n+1)^2 and 1+16(n+2)^2 are prime.

Original entry on oeis.org

4, 29, 44, 64, 109, 174, 329, 614, 1044, 1694, 1879, 2044, 2254, 2474, 2709, 3814, 5024, 5039, 5154, 5364, 5634, 5784, 6244, 6624, 6779, 6804, 6949, 7964, 8079, 8509, 8624, 9034, 9324, 9394, 9729, 10719, 11114, 11504, 11954, 12149, 13064, 13319, 13354, 13554, 14019
Offset: 1

Views

Author

Zak Seidov, Feb 28 2015

Keywords

Comments

Numbers n, n+1 and n+2 are terms in A255634.
The corresponding primes for 1+16n^2 are 257, 13457, 30977, 65537, 190097, 484417, ... (all == 7 mod 10);
The corresponding primes for 1+16(n+1)^2 are 401, 14401, 32401, 67601, 193601, 490001, ... (all == 1 mod 10);
The corresponding primes for 1+16(n+2)^2 are 577, 15377, 33857, 69697, 197137, 495617, ... (all == 7 mod 10).

Crossrefs

Programs

  • Magma
    [n: n in [0..15000] | forall{16*n^2+i: i in [1, 32*n+17, 64*n+65] |  IsPrime(16*n^2+i)}]; // Vincenzo Librandi, Mar 04 2015
  • Maple
    A255635:=n->`if`(isprime(1+16*n^2) and isprime(1+16*(n+1)^2) and isprime(1+16*(n+2)^2), n, NULL): seq(A255635(n), n=1..2*10^4); # Wesley Ivan Hurt, Feb 28 2015
  • Mathematica
    Select[Range[15000],AllTrue[{16#^2,16(#+1)^2,16(#+2)^2}+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 09 2015 *)
  • PARI
    select(n->isprime(1+16*n^2) && isprime(1+16*(n+1)^2) && isprime(1+16*(n+2)^2), vector(15000, n, n)) \\ Colin Barker, Mar 01 2015
    
Showing 1-1 of 1 results.