cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255680 a(n) = n*(n mod 3)*(n mod 5).

Original entry on oeis.org

0, 1, 8, 0, 16, 0, 0, 14, 48, 0, 0, 22, 0, 39, 112, 0, 16, 68, 0, 76, 0, 0, 44, 138, 0, 0, 52, 0, 84, 232, 0, 31, 128, 0, 136, 0, 0, 74, 228, 0, 0, 82, 0, 129, 352, 0, 46, 188, 0, 196, 0, 0, 104, 318, 0, 0, 112, 0, 174, 472, 0, 61, 248, 0, 256, 0, 0, 134, 408, 0, 0, 142, 0, 219, 592, 0, 76, 308, 0, 316, 0, 0, 164, 498, 0, 0, 172, 0
Offset: 0

Views

Author

Zak Seidov, Mar 01 2015

Keywords

Comments

a(n) = 0 for n = 3k and 5k, k=0,1,2,...

Crossrefs

Cf. A255642.

Programs

  • Magma
    [n*(n mod 3)*(n mod 5): n in [0..80]]; // Vincenzo Librandi, Mar 03 2015
  • Mathematica
    Table[x*Mod[x, 3]*Mod[x, 5], {x, 0, 100}]
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1},{0,1,8,0,16,0,0,14,48,0,0,22,0,39,112,0,16,68,0,76,0,0,44,138,0,0,52,0,84,232},100] (* Harvey P. Dale, Sep 06 2015 *)
  • PARI
    vector(101, n, (n-1)*((n-1)%3)*((n-1)%5))
    

Formula

Empirical g.f.: x*(8*x^28 + 6*x^27 + 8*x^25 + 42*x^22 + 16*x^21 + 44*x^18 + 52*x^16 + 14*x^15 + 112*x^13 + 39*x^12 + 22*x^10 + 48*x^7 + 14*x^6 + 16*x^3 + 8*x + 1) / ((x - 1)^2*(x^2 + x + 1)^2*(x^4 + x^3 + x^2 + x + 1)^2*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)^2). - Colin Barker, Mar 02 2015
a(n) = n*A010872(n)*A010874(n). - Michel Marcus, Mar 03 2015

Extensions

Typo in first Mathematica program corrected by Harvey P. Dale, Jul 03 2021