A255680 a(n) = n*(n mod 3)*(n mod 5).
0, 1, 8, 0, 16, 0, 0, 14, 48, 0, 0, 22, 0, 39, 112, 0, 16, 68, 0, 76, 0, 0, 44, 138, 0, 0, 52, 0, 84, 232, 0, 31, 128, 0, 136, 0, 0, 74, 228, 0, 0, 82, 0, 129, 352, 0, 46, 188, 0, 196, 0, 0, 104, 318, 0, 0, 112, 0, 174, 472, 0, 61, 248, 0, 256, 0, 0, 134, 408, 0, 0, 142, 0, 219, 592, 0, 76, 308, 0, 316, 0, 0, 164, 498, 0, 0, 172, 0
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, -1).
Crossrefs
Cf. A255642.
Programs
-
Magma
[n*(n mod 3)*(n mod 5): n in [0..80]]; // Vincenzo Librandi, Mar 03 2015
-
Mathematica
Table[x*Mod[x, 3]*Mod[x, 5], {x, 0, 100}] LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1},{0,1,8,0,16,0,0,14,48,0,0,22,0,39,112,0,16,68,0,76,0,0,44,138,0,0,52,0,84,232},100] (* Harvey P. Dale, Sep 06 2015 *)
-
PARI
vector(101, n, (n-1)*((n-1)%3)*((n-1)%5))
Formula
Empirical g.f.: x*(8*x^28 + 6*x^27 + 8*x^25 + 42*x^22 + 16*x^21 + 44*x^18 + 52*x^16 + 14*x^15 + 112*x^13 + 39*x^12 + 22*x^10 + 48*x^7 + 14*x^6 + 16*x^3 + 8*x + 1) / ((x - 1)^2*(x^2 + x + 1)^2*(x^4 + x^3 + x^2 + x + 1)^2*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)^2). - Colin Barker, Mar 02 2015
Extensions
Typo in first Mathematica program corrected by Harvey P. Dale, Jul 03 2021
Comments