cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255687 a(n) = n*(n + 1)*(7*n + 11)/6.

Original entry on oeis.org

0, 6, 25, 64, 130, 230, 371, 560, 804, 1110, 1485, 1936, 2470, 3094, 3815, 4640, 5576, 6630, 7809, 9120, 10570, 12166, 13915, 15824, 17900, 20150, 22581, 25200, 28014, 31030, 34255, 37696, 41360, 45254, 49385, 53760, 58386, 63270, 68419, 73840, 79540, 85526
Offset: 0

Views

Author

Luce ETIENNE, Mar 02 2015

Keywords

Comments

This sequence gives the number of triangles of all sizes in (3*n^2+2*n)-polyiamonds in a pentagonal or heptagonal configuration.
Also sum of 2*n*(n+1)*(n+2)/3 triangles oriented in one direction and n*(n+1)^2/2 oriented in the opposite direction.

Crossrefs

First bisection of A212977.
Partial sums of A179986.

Programs

  • Magma
    [n*(n+1)*(7*n+11)/6: n in [0..50]]; // Bruno Berselli, Mar 02 2015
    
  • Maple
    A255687:=n->n*(n+1)*(7*n+11)/6: seq(A255687(n), n=0..50); # Wesley Ivan Hurt, Mar 03 2015
  • Mathematica
    Table[n (n + 1) (7 n + 11)/6, {n, 0, 50}] (* Bruno Berselli, Mar 02 2015 *)
    LinearRecurrence[{4,-6,4,-1},{0,6,25,64},50] (* Harvey P. Dale, Jul 17 2015 *)
  • PARI
    vector(50, n, n--; n*(n+1)*(7*n+11)/6)
    
  • PARI
    concat(0, Vec(x*(x+6)/(x-1)^4 + O(x^100))) \\ Colin Barker, Mar 02 2015
    
  • Sage
    [n*(n+1)*(7*n+11)/6 for n in (0..50)] # Bruno Berselli, Mar 02 2015

Formula

a(n) = (1/2)*(Sum_{j=0..n} (n+1-j)*(3*n-j) + Sum_{j=0..n-1} (n-j)*(3*n+1-3*j)).
From Colin Barker, Mar 02 2015: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(x + 6)/(x - 1)^4. (End)
a(n) = -A007584(-n-1). - Bruno Berselli, Mar 02 2015
From Elmo R. Oliveira, Aug 18 2025: (Start)
E.g.f.: exp(x)*x*(36 + 39*x + 7*x^2)/6.
a(n) = A212977(2*n). (End)