cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255843 a(n) = 2*n^2 + 4.

Original entry on oeis.org

4, 6, 12, 22, 36, 54, 76, 102, 132, 166, 204, 246, 292, 342, 396, 454, 516, 582, 652, 726, 804, 886, 972, 1062, 1156, 1254, 1356, 1462, 1572, 1686, 1804, 1926, 2052, 2182, 2316, 2454, 2596, 2742, 2892, 3046, 3204, 3366, 3532, 3702, 3876, 4054, 4236, 4422
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=2 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
Equivalently, numbers m such that 2*m - 8 is a square.

Crossrefs

Cf. A059100.
Cf. unsigned A147973: numbers of the form 2*m^2-4.
Cf. sequences of the form 2*m^2+2*k: A005893 (k=1), this sequence (k=2), A255844 (k=3), A155966 (k=4), A255845 (k=5), A255842 (k=6), A255846 (k=7), A255847 (k=8), A255848 (k=9).

Programs

  • Magma
    [2*n^2+4: n in [0..50]];
  • Mathematica
    Table[2 n^2 + 4, {n, 0, 50}]
  • PARI
    vector(50, n, n--; 2*n^2+4)
    
  • Sage
    [2*n^2+4 for n in (0..50)]
    

Formula

G.f.: 2*(2 - 3*x + 3*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A059100(n).
a(n) = a(n-1) + 4n - 2. - Bob Selcoe, Mar 25 2020
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(2)*Pi*coth(sqrt(2)*Pi))/8.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(2)*Pi*cosech(sqrt(2)*Pi))/8. (End)
E.g.f.: 2*exp(x)*(2 + x + x^2). - Stefano Spezia, Aug 07 2024

Extensions

Edited by Bruno Berselli, Mar 13 2015