cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A005893 Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0).

Original entry on oeis.org

1, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234
Offset: 0

Views

Author

Keywords

Comments

Number of n-matchings of the wheel graph W_{2n} (n > 0). Example: a(2)=10 because in the wheel W_4 (rectangle ABCD and spokes OA,OB,OC,OD) we have the 2-matchings: (AB, OC), (AB, OD), (BC, OA), (BC,OD), (CD,OA), (CD,OB), (DA,OB), (DA,OC), (AB,CD) and (BC,DA). - Emeric Deutsch, Dec 25 2004
For n > 0 a(n) is the difference of two tetrahedral (or pyramidal) numbers: binomial(n+3, 3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n+1) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-3)(n-2)(n-1)/6. - Alexander Adamchuk, May 20 2006; updated by Peter Munn, Aug 25 2017 due to changed offset in A000292
Equals binomial transform of [1, 3, 3, 1, -1, 1, -1, 1, -1, 1, ...]. Binomial transform of A005893 = nonzero terms of A053545: (1, 5, 19, 63, 191, ...). - Gary W. Adamson, Apr 28 2008
Disregarding the terms < 10, the sums of four consecutive triangular numbers (A000217). - Rick L. Shepherd, Sep 30 2009
Use a set of n concentric circles where n >= 0 to divide the plane. a(n) is the maximal number of regions after the 2nd division. - Frank M Jackson, Sep 07 2011
Euler transform of length 4 sequence [4, 0, 0, -1]. - Michael Somos, May 14 2014
Also, growth series for affine Coxeter group (or affine Weyl group) A_3 or D_3. - N. J. A. Sloane, Jan 11 2016
For n > 2 the generalized Pell's equation x^2 - 2*(a(n) - 2)y^2 = (a(n) - 4)^2 has a finite number of positive integer solutions. - Muniru A Asiru, Apr 19 2016
Union of A188896, A277449, {1,4}. - Muniru A Asiru, Nov 25 2016
Interleaving of A008527 and A108099. - Bruce J. Nicholson, Oct 14 2019

Examples

			G.f. = 1 + 4*x + 10*x^2 + 20*x^3 + 34*x^4 + 52*x^5 + 74*x^6 + 100*x^7 + ...
		

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #28.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A255843.
The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.
For partial sums see A005894.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

Formula

G.f.: (1 - x^4)/(1-x)^4.
a(n) = A071619(n-1) + A071619(n) + A071619(n+1), n > 0. - Ralf Stephan, Apr 26 2003
a(n) = binomial(n+3, 3) - binomial(n-1, 3) for n >= 1. - Mitch Harris, Jan 08 2008
a(n) = (n+1)^2 + (n-1)^2. - Benjamin Abramowitz, Apr 14 2009
a(n) = A000217(n-2) + A000217(n-1) + A000217(n) + A000217(n+1) for n >= 2. - Rick L. Shepherd, Sep 30 2009
a(n) = 2*n^2 - 0^n + 2. - Vincenzo Librandi, Sep 27 2011
a(0)=1, a(1)=4, a(2)=10, a(3)=20, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 26 2012
a(n) = A228643(n+1,2) for n > 0. - Reinhard Zumkeller, Aug 29 2013
a(n) = a(-n) for all n in Z. - Michael Somos, May 14 2014
For n >= 2: a(n) = a(n-1) + 4*n - 2. - Bob Selcoe, Mar 22 2016
E.g.f.: -1 + 2*(1 + x + x^2)*exp(x). - Ilya Gutkovskiy, Apr 19 2016
a(n) = 2*A002522(n), n>0. - R. J. Mathar, May 30 2022
From Amiram Eldar, Sep 16 2022: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi)*Pi + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi)*Pi + 3)/4. (End)
Empirical: Integral_{u=-oo..+oo} sigmoid(u)*log(sigmoid(n * u)) du = -Pi^2*a(n) / (24*n), where sigmoid(x) = 1/(1+exp(-x)). Also works for non-integer n>0. - Carlo Wood, Dec 04 2023
Let P(k,n) be the n-th k-gonal number. Then P(a(k),n) = (k*n-k+1)^2 + (k-1)^2*(n-1). - Charlie Marion, May 15 2024

A344993 Number of polygons formed when every pair of vertices of a row of n adjacent congruent rectangles are joined by an infinite line.

Original entry on oeis.org

0, 4, 20, 68, 168, 368, 676, 1184, 1912, 2944, 4292, 6152, 8456, 11484, 15164, 19624, 24944, 31508, 39076, 48212, 58656, 70672, 84284, 100192, 117888, 138100, 160580, 185796, 213568, 245008, 279116, 317424, 359280, 405124, 454868, 509264, 567640, 631988, 701228, 776032, 855968, 943260, 1035844
Offset: 0

Views

Author

Keywords

Comments

The number of polygons formed inside the rectangles is A306302(n), while the number of polygons formed outside the rectangles is 2*A332612(n+1).
The number of open regions, those outside the polygons with unbounded area and two edges that go to infinity, for n >= 1 is given by 2*n^2 + 4*n + 6 = A255843(n+1).
Like A306302(n) is appears only 3-gons and 4-gons are generated by the infinite lines.

Examples

			a(1) = 4 as connecting the four vertices of a single rectangle forms four triangles inside the rectangle. Twelve open regions outside these triangles are also formed.
a(2) = 20 as connecting the six vertices of two adjacent rectangles forms two quadrilaterals and fourteen triangles inside the rectangles while also forming four triangles outside the rectangles, giving twenty polygons in total. Twenty-two open regions outside these polygons are also formed.
See the linked images for further examples.
		

Crossrefs

See A347750 and A347751 for the numbers of vertices and edges in the finite part of the corresponding graph.
Cf. A332612 (half the number of polygons outside the rectangles), A306302 (number of polygons inside the rectangles), A255843.

Programs

  • Python
    from sympy import totient
    def A344993(n): return 2*n*(n+1) + 2*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 21 2021

Formula

a(n) = 2*A332612(n+1) + A306302(n) = 2*Sum_{i=2..n, j=1..i-1, gcd(i,j)=1} (n+1-i)*(n+1-j) + Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) + n^2 + 2*n.
a(n) = 2*n*(n+1) + 2*Sum_{i=2..n} (n+1-i)*(2*n+2-i)*phi(i). - Chai Wah Wu, Aug 21 2021

A271625 a(n) = = 2*(n+1)^2 - 5.

Original entry on oeis.org

3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n + 10 is a perfect square.

Crossrefs

Numbers h such that 2*h + k is a perfect square: A294774 (k=-9), A255843 (k=-8), A271649 (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), this sequence (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 + 4*n - 3: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n+10)];
    
  • Mathematica
    Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
    2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
  • PARI
    x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • Python
    def A271625(n): return 2*pow(n+1,2) - 5
    print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025

Formula

G.f.: x*(3 + 4*x - 3*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = 13/30 - Pi*cot(sqrt(5/2)*Pi)/(2*sqrt(10)) = 0.5627678459924... . - Vaclav Kotesovec, Apr 11 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 + 6*x - 3) + 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
a(n) = 2*A000290(n+1) - 5. - G. C. Greubel, Jan 21 2025

Extensions

Name simplified by G. C. Greubel, Jan 21 2025

A270109 a(n) = n^3 + (n+1)*(n+2).

Original entry on oeis.org

2, 7, 20, 47, 94, 167, 272, 415, 602, 839, 1132, 1487, 1910, 2407, 2984, 3647, 4402, 5255, 6212, 7279, 8462, 9767, 11200, 12767, 14474, 16327, 18332, 20495, 22822, 25319, 27992, 30847, 33890, 37127, 40564, 44207, 48062, 52135, 56432, 60959, 65722, 70727, 75980, 81487, 87254
Offset: 0

Views

Author

Bruno Berselli, Mar 11 2016, at the suggestion of Giuseppe Amoruso in BASE Cinque forum

Keywords

Comments

For n>1, many consecutive terms of the sequence are generated by floor(sqrt(n^2 + 2)^3) + n^2 + 2.
It appears that this is a subsequence of A000037 (the nonsquares).
The primes in the sequence belong to A045326.
Inverse binomial transform is 2, 5, 8, 6, 0, 0, 0, ... (0 continued).

Crossrefs

Subsequence of A001651, A047212.
Cf. A027444: numbers of the form n^3+n*(n+1); A085490: numbers of the form n^3+(n-1)*n.
Cf. A008865: numbers of the form n+(n+1)*(n+2); A130883: numbers of the form n^2+(n+1)*(n+2).

Programs

  • Magma
    [n^3+(n+1)*(n+2): n in [0..50]];
  • Mathematica
    Table[n^3 + (n + 1) (n + 2), {n, 0, 50}]
  • Maxima
    makelist(n^3+(n+1)*(n+2), n, 0, 50);
    
  • PARI
    vector(50, n, n--; n^3+(n+1)*(n+2))
    
  • Sage
    [n^3+(n+1)*(n+2) for n in (0..50)]
    

Formula

O.g.f.: (2 - x + 4*x^2 + x^3)/(1 - x)^4.
E.g.f.: (2 + x)*(1 + x)^2*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3.
a(n+h) - a(n) + a(n-h) = n^3 + n^2 + (6*h^2+3)*n + (2*h^2+2) for any h. This identity becomes a(n) = n^3 + n^2 + 3*n + 2 if h=0.
a(h*a(n) + n) = (h*a(n))^3 + (3*n+1)*(h*a(n))^2 + (3*n^2+2*n+3)*(h*a(n)) + a(n) for any h, therefore a(h*a(n) + n) is always a multiple of a(n).
a(n) + a(-n) = 2*A059100(n) = A255843(n).
a(n) - a(-n) = 4*A229183(n).

A271624 a(n) = 2*n^2 - 4*n + 4.

Original entry on oeis.org

2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016

Examples

			a(1) = 2*1^2 - 4*1 + 4 = 2.
		

Crossrefs

Cf. A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).

Programs

  • Magma
    [ 2*n^2 - 4*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-4)];
    
  • Mathematica
    Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
  • PARI
    x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • PARI
    a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016

Formula

a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 - x + 2) - 2).
a(n) = 2*A160457(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A271649 a(n) = 2*(n^2 - n + 2).

Original entry on oeis.org

4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 7 is a perfect square.
Galois numbers for three-dimensional vector space, defined as the total number of subspaces in a three-dimensional vector space over GF(n-1), when n-1 is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016

Examples

			a(1) = 2*(1^2 - 1 + 2) = 4.
		

Crossrefs

Numbers h such that 2*h + k is a perfect square: no sequence (k=-9), A255843 (k=-8), this sequence (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), A271625 (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 - 2*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-7)];
    
  • Maple
    A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
  • Mathematica
    Table[2 (n^2 - n + 2), {n, 53}] (* or *)
    Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
    Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
  • PARI
    a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*A000124(n).
a(n) = 2*A014206(n).
a(n) = A137882(n), n > 1. - R. J. Mathar, Apr 12 2016
Sum_{n>=1} 1/a(n) = tanh(sqrt(7)*Pi/2)*Pi/(2*sqrt(7)). - Amiram Eldar, Jul 30 2024
From Elmo R. Oliveira, Nov 18 2024: (Start)
G.f.: 4*x*(1 - x + x^2)/(1 - x)^3.
E.g.f.: 2*(exp(x)*(x^2 + 2) - 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A155966 a(n) = 2*n^2 + 8.

Original entry on oeis.org

8, 10, 16, 26, 40, 58, 80, 106, 136, 170, 208, 250, 296, 346, 400, 458, 520, 586, 656, 730, 808, 890, 976, 1066, 1160, 1258, 1360, 1466, 1576, 1690, 1808, 1930, 2056, 2186, 2320, 2458, 2600, 2746, 2896, 3050, 3208, 3370, 3536, 3706, 3880, 4058, 4240, 4426, 4616
Offset: 0

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Comments

The identity (n^3 + 4*n)^2 + (2*n^2 + 8)^2 = (n^2 + 4)^3 can be written as A155965(n)^2 + a(n)^2 = A087475(n)^3.

Crossrefs

Cf. similar sequences listed in A255843.

Programs

Formula

G.f.: 2*(4 - 7*x + 5*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A087475(n). - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/16 + coth(2*Pi)*Pi/8.
Sum_{n>=0} (-1)^n/a(n) = 1/16 + cosech(2*Pi)*Pi/8. (End)
E.g.f.: 2*exp(x)*(4 + x + x^2). - Elmo R. Oliveira, Jan 17 2025

Extensions

Offset changed from 1 to 0 and added a(0)=8 by Bruno Berselli, Mar 13 2015

A255847 a(n) = 2*n^2 + 16.

Original entry on oeis.org

16, 18, 24, 34, 48, 66, 88, 114, 144, 178, 216, 258, 304, 354, 408, 466, 528, 594, 664, 738, 816, 898, 984, 1074, 1168, 1266, 1368, 1474, 1584, 1698, 1816, 1938, 2064, 2194, 2328, 2466, 2608, 2754, 2904, 3058, 3216, 3378, 3544, 3714, 3888, 4066, 4248, 4434, 4624
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=8 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
Equivalently, numbers m such that 2*m - 32 is a square.

Crossrefs

Cf. A189833.
Subsequence of A047467.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+16: n in [0..50]];
  • Mathematica
    Table[2 n^2 + 16, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{16,18,24},50] (* Harvey P. Dale, Nov 11 2017 *)
  • PARI
    vector(50, n, n--; 2*n^2+16)
    
  • Sage
    [2*n^2+16 for n in (0..50)]
    

Formula

G.f.: 2*(8 - 15*x + 9*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A189833(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + 2*sqrt(2)*Pi*coth(2*sqrt(2)*Pi))/32.
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*sqrt(2)*Pi*cosech(2*sqrt(2)*Pi))/32. (End)
E.g.f.: 2*exp(x)*(8 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Edited by Bruno Berselli, Mar 13 2015

A338432 Triangle read by rows: T(n, k) = (n - k + 1)^2 + 2*k^2, for n >= 1, and k = 1, 2, ..., n.

Original entry on oeis.org

3, 6, 9, 11, 12, 19, 18, 17, 22, 33, 27, 24, 27, 36, 51, 38, 33, 34, 41, 54, 73, 51, 44, 43, 48, 59, 76, 99, 66, 57, 54, 57, 66, 81, 102, 129, 83, 72, 67, 68, 75, 88, 107, 132, 163, 102, 89, 82, 81, 86, 97, 114, 137, 166, 201
Offset: 1

Views

Author

Wolfdieter Lang, Dec 09 2020

Keywords

Comments

This triangle is obtained from the array A(m, k) = m^2 + 2*k^2, for k and m >= 1, read by upwards antidiagonals. This array A is of interest for representing numbers as a sum of three non-vanishing squares with two squares coinciding.
For the numbers represented this way, see A154777. To find the actual values for m and k (taken positive), given a representable number from A154777, one can also use the number triangle T(n, k) = A(n-k+1, k).
To find the number of representations of value N (from A154777), it is sufficient to consider the rows n >= 1 not exceeding n_{max} = Floor(N, Min), where the sequence Min gives the minima of the numbers in each row: Min = {min(n)}_{n>=1} with min(n) = min(T(n, 1), T(n, 2), ..., T(n, n)) and Floor(N, Min) is the greatest member of Min not exceeding N.
Conjecture: min(n) = T(n, ceiling(n/3)), n >= 1. This is the sequence (n+1)^2 - ceiling(n/3)*(2*(n+1) - 3*ceiling(n/3)) = A071619(n+1) = ceiling((2/3)*(n+1)^2) = (n+1)^2 - floor((1/3)*(n+1)^2) = 3, 6, 11, 17, 24, 33, 43, .... (Proof of these identities by considering the three n (mod 3) cases.)
For the multiplicities of the representable values A154777(n), see A339047.
The author met this representation problem in connection with special triples of integer curvatures in the Descartes-Steiner five circle problem.

Examples

			The triangle T(n, k) begins:
n \ k  1   2   3   4   5   6   7   8   9  10  11  12 ...
1:     3
2:     6   9
3:    11  12  19
4:    18  17  22  33
5:    27  24  27  36  51
6:    38  33  34  41  54  73
7:    51  44  43  48  59  76  99
8:    66  57  54  57  66  81 102 129
9:    83  72  67  68  75  88 107 132 163
10:  102  89  82  81  86  97 114 137 166 201
11:  123 108  99  96  99 108 123 144 171 204 243
12:  146 129 118 113 114 121 134 153 178 209 246 289
...
----------------------------------------------------
T(5, 1) = 5^2 + 2*1^2 = 27 = T(5, 3) = 3^2 + 2*3^2. A338433(11) = 2 for A154777(11) = 27.
T(4, 4) = 1^2 + 2*4^2 = 33 = T(6, 2) = 5^2 + 2*2^2. A338433(12) = 2 for A154777(12) = 33.
T(5, 5) = 1^2 + 2*5^2 = 51 = T(7, 1) = 7^2 + 2*1^2. A338433(20) = 2 for A154777(20) = 51.
T(7, 7) = 1^1 - 2*7^2 = 99 = T(11, 3) = 9^2 + 2*3^2 = 99 = T(11, 5) = 7^2 + 2*5^2. A338433(39) = 3 for A154777(39) = 99.
The first multiplicity 4 appears for 297.
		

Crossrefs

Cf. Columns k = 1..3: A059100, A189833, A241848.
Cf. Diagonals m = 1..4: A058331, A255843, A339048, A255847.

Formula

T(n, k) = A(n - k + 1, k), with the array A(m, k) = m^2 + 2*k^2, for n >= 1 and k = 1, 2, ..., n, and 0 otherwise.
G.f. of T and A column k (offset 0): G(k, x) = (1 + x + 2*(1 - x)^2*k^2)/(1-x)^3, for k >= 1.
G.f. of T diagonal m (A row m) (offset 0): D(m, x) = ((2*(1+x) + (1-x)^2*m^2)/(1-x)^3), for m >= 1.
G.f. of row polynomials in x (that is, g.f. of the triangle): G(z,x) = (3 - 3*z + (2 - 6*x + x^2)*z^2 + (2 + x)*x*z^3)*x*z / ((1 - z)*(1 - x*z))^3.

A339048 a(n) = 2*n^2 + 9.

Original entry on oeis.org

9, 11, 17, 27, 41, 59, 81, 107, 137, 171, 209, 251, 297, 347, 401, 459, 521, 587, 657, 731, 809, 891, 977, 1067, 1161, 1259, 1361, 1467, 1577, 1691, 1809, 1931, 2057, 2187, 2321, 2459, 2601, 2747, 2897, 3051, 3209, 3371, 3537, 3707, 3881
Offset: 0

Views

Author

Wolfdieter Lang, Dec 09 2020

Keywords

Comments

Third diagonal sequence of triangle A338432, for n >= 1.

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 9, n >= 0.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n >= 3.
a(n) = A338432(n + 2, n), for n >= 1 and a(0) = 9.
G.f.: (9 - 16*x + 11*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(9 + 2*x + 2*x^2). - Stefano Spezia, Aug 07 2024
Showing 1-10 of 16 results. Next