A255978 a(n) = a(n-1) + a(n-2) + (1 + (-1)^(a(n-1) + a(n-2))) with a(0)=0, a(1)=1.
0, 1, 1, 4, 5, 9, 16, 25, 41, 68, 109, 177, 288, 465, 753, 1220, 1973, 3193, 5168, 8361, 13529, 21892, 35421, 57313, 92736, 150049, 242785, 392836, 635621, 1028457, 1664080, 2692537, 4356617, 7049156, 11405773, 18454929, 29860704, 48315633, 78176337, 126491972, 204668309, 331160281, 535828592
Offset: 0
Examples
For n = 2, a(2) = 0 + 1 + (1 + (-1)^(0 + 1)) = 1. For n = 3, a(3) = 1 + 1 + (1 + (-1)^(1 + 1)) = 4. For n = 4, a(4) = 1 + 4 + (1 + (-1)^(1 + 4)) = 5. For n = 5, a(5) = 4 + 5 + (1 + (-1)^(4 + 5)) = 9.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- W. Puszkarz, A Note on Minimal Extensions of the Fibonacci Sequence, viXra:1503.0113, 2015.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,-1).
Programs
-
Magma
[n le 2 select (n-1) else Self(n-1)+Self(n-2)+(1+(-1)^(Self(n-1)+Self(n-2))): n in [1..45] ]; // Vincenzo Librandi, Mar 24 2015
-
Mathematica
RecurrenceTable[{a[n]==a[n-1]+a[n-2] +(1+(-1)^(a[n-1]+a[n-2])), a[0]==0, a[1]==1}, a, {n, 0, 50}] CoefficientList[Series[x (1 + 2 x^2 - x^3) / ((1 - x) (1 + x + x^2) (1 - x - x^2)), {x, 0, 70}], x] (* Vincenzo Librandi, Mar 24 2015 *) LinearRecurrence[{1,1,1,-1,-1},{0,1,1,4,5},50] (* Harvey P. Dale, Mar 26 2019 *)
-
PARI
concat(0, Vec(x*(1+2*x^2-x^3)/((1-x)*(1+x+x^2)*(1-x-x^2)) + O(x^30))) \\ Michel Marcus, Mar 23 2015
Formula
a(n) = a(n-1) + a(n-2) + (1 + (-1)^(a(n-1) + a(n-2))), a(0)=0, a(1)=1.
G.f.: x*(1+2*x^2-x^3)/((1-x)*(1+x+x^2)*(1-x-x^2)). - Joerg Arndt, Mar 16 2015
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5) for n>4. - Colin Barker, Mar 28 2015
a(n) = 2*Fibonacci(n) - (1 if n != 0 (mod 3)). - Nicolas Bělohoubek, Sep 29 2021
Comments