cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256008 Self-inverse permutation of positive integers: 4k+1 is swapped with 4k+3, and 4k+2 with 4k+4.

Original entry on oeis.org

3, 4, 1, 2, 7, 8, 5, 6, 11, 12, 9, 10, 15, 16, 13, 14, 19, 20, 17, 18, 23, 24, 21, 22, 27, 28, 25, 26, 31, 32, 29, 30, 35, 36, 33, 34, 39, 40, 37, 38, 43, 44, 41, 42, 47, 48, 45, 46, 51, 52, 49, 50, 55, 56, 53, 54, 59, 60, 57, 58, 63, 64, 61, 62, 67, 68, 65, 66, 71, 72, 69, 70, 75, 76, 73, 74, 79
Offset: 1

Views

Author

Ivan Neretin, May 06 2015

Keywords

Comments

A lexicographically minimal sequence of distinct positive integers such that a(n)*n + 1 is a square. The same condition without the requirement for a(n) to be distinct would produce A076942.

Crossrefs

Programs

  • Magma
    [n-2*(-1)^((2*n+1-(-1)^n) div 4): n in [1..100]]; // Wesley Ivan Hurt, Oct 13 2015
    
  • Magma
    I:=[3,4,1,2]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Oct 14 2015
    
  • Magma
    /* By definition: */ &cat[[4*k+3,4*k+4,4*k+1,4*k+2]: k in [0..20]]; // Bruno Berselli, Oct 19 2015
    
  • Maple
    A256008:=n->n-2*(-1)^((2*n+1-(-1)^n)/4): seq(A256008(n), n=1..100); # Wesley Ivan Hurt, Oct 13 2015
  • Mathematica
    Table[BitXor[n - 1, 2] + 1, {n, 77}]
    CoefficientList[Series[(3 - 2*x - x^2 + 2*x^3)/((x - 1)^2*(x^2 + 1)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Oct 13 2015 *)
    LinearRecurrence[{2, -2, 2, -1}, {3, 4, 1, 2}, 80] (* Vincenzo Librandi, Oct 14 2015 *)
  • PARI
    a(n) = bitxor(n-1,2)+1 \\ Charles R Greathouse IV, May 06 2015
    
  • PARI
    Vec(x*(3-2*x-x^2+2*x^3)/((x-1)^2*(x^2+1)) + O(x^100)) \\ Altug Alkan, Oct 13 2015
    
  • PARI
    a(n) = (-1+I)*((-I)^n+I*I^n)+n \\ Colin Barker, Oct 19 2015
    
  • Python
    def a(n): return ((n-1)^2) + 1
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Mar 21 2023

Formula

From Wesley Ivan Hurt, Oct 13 2015: (Start)
G.f.: x*(3-2*x-x^2+2*x^3)/((x-1)^2*(x^2+1)).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>4.
a(n) = n-2*(-1)^((2*n+1-(-1)^n)/4). (End)
a(n) = (-1+i)*((-i)^n+i*i^n)+n, where i = sqrt(-1). - Colin Barker, Oct 19 2015
a(n) = 1 + A004443(n-1). - Alois P. Heinz, Jan 23 2022