cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256127 Decimal expansion of the second Malmsten integral: Integer_{x >= 1} log(log(x))/(1 + x + x^2) dx, negated.

Original entry on oeis.org

1, 2, 6, 3, 2, 1, 4, 8, 1, 7, 0, 6, 2, 0, 9, 0, 3, 6, 3, 6, 5, 2, 2, 6, 7, 5, 3, 2, 5, 3, 2, 0, 2, 3, 9, 1, 8, 4, 4, 2, 4, 4, 3, 0, 9, 4, 6, 5, 2, 8, 3, 5, 1, 6, 3, 7, 8, 9, 9, 7, 4, 3, 0, 4, 2, 9, 0, 8, 6, 7, 4, 0, 0, 8, 5, 1, 2, 5, 4, 3, 7, 1, 7, 8, 0, 5, 2, 9, 7, 4, 1, 9, 8, 2, 9, 7, 0, 0, 2, 2, 4, 8, 7, 6
Offset: 0

Views

Author

Keywords

Examples

			-0.12632148170620903636522675325320239184424430946528...
		

Crossrefs

Cf. A115252 (first Malmsten integral), A256128 (third Malmsten integral) , A256129 (fourth Malmsten integral), A073005 (Gamma(1/3)), A256165 (log(Gamma(1/3))), A061444 (log(2*Pi)), A002391 (log 3), A002194 (sqrt 3).

Programs

  • Maple
    evalf(Pi*(8*log(2*Pi) - 3*log(3) - 12*log(GAMMA(1/3)))/(6*sqrt(3)),120); # Vaclav Kotesovec, Mar 17 2015
  • Mathematica
    RealDigits[Integrate[Log[Log[1/x]]/(1 + x + x^2), {x, 0, 1}], 10, 100][[1]] (* Alonso del Arte, Mar 16 2015 *)
    RealDigits[Pi*(8*Log[2*Pi] - 3*Log[3] - 12*Log[Gamma[1/3]])/(6*Sqrt[3]),10,105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
  • PARI
    Pi*(8*log(2*Pi) - 3*log(3) - 12*log(gamma(1/3)))/(6*sqrt(3)) \\ Michel Marcus, Mar 18 2015
    
  • PARI
    intnum(x=0, 1, log(log(1/x))/(1 + x + x^2))
    
  • PARI
    intnum(x=1, oo, log(log(x))/(1 + x + x^2))
    
  • PARI
    intnum(x=0, [oo, 1], log(x)/(1 + 2*cosh(x))) \\ Gheorghe Coserea, Sep 26 2018

Formula

Equals Integral_{x=0..1} log(log(1/x))/(1 + x + x^2) dx.
Equals Integral_{x>=0} log(x)/(1 + 2*cosh(x)) dx.
Equals Pi*(8*log(2*Pi) - 3*log(3) - 12*log(Gamma(1/3)))/(6*sqrt(3)).