A256152 Numbers k such that k is the product of two distinct primes and sigma(k) is a square number.
22, 94, 115, 119, 214, 217, 265, 382, 497, 517, 527, 679, 745, 862, 889, 1174, 1177, 1207, 1219, 1393, 1465, 1501, 1649, 1687, 1915, 1942, 2101, 2159, 2201, 2359, 2899, 2902, 2995, 3007, 3143, 3383, 3401, 3427, 3937, 4039, 4054, 4097, 4315, 4529, 4537, 4702, 4741, 5029, 5065, 5398, 5587
Offset: 1
Keywords
Examples
199 is in the sequence because 119=7*17 (the product of two distinct primes) and sigma(119)=8*18=144=12^2 (a square number).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a256152 n = a256152_list !! (n-1) 256152_list = filter f a006881_list where f x = a010052' ((spf + 1) * (x `div` spf + 1)) == 1 where spf = a020639 x -- Reinhard Zumkeller, Apr 06 2015
-
Mathematica
f[n_] := Block[{pf = FactorInteger@ n}, Max @@ Last /@ pf == 1 && Length@ pf == 2]; Select[Range@ 6000, IntegerQ@ Sqrt@ DivisorSigma[1, #] && f@ # &] (* Michael De Vlieger, Mar 17 2015 *)
-
PARI
{for(i=1,10^4,if(omega(i)==2&&issquarefree(i)&&issquare(sigma(i)),print1(i,", ")))}
Comments