A256162 Positive integers a(n) such that number of digits in decimal expansion of a(n)^a(n) is divisible by a(n).
1, 8, 9, 98, 99, 998, 999, 9998, 9999, 99998, 99999, 999998, 999999, 9999998, 9999999, 99999998, 99999999, 999999998, 999999999, 9999999998, 9999999999, 99999999998, 99999999999, 999999999998, 999999999999, 9999999999998, 9999999999999
Offset: 1
Examples
1^1 = 1 has 1 digit, and 1 is divisible by 1. 8^8 = 16777216 has 8 digits, and 8 is divisible by 8. 98^98 has 196 digits, and 196 is divisible by 98.
Links
- Bui Quang Tuan, Table of n, a(n) for n = 1..101
Crossrefs
Cf. A055642 (Number of digits in decimal expansion of n).
Programs
-
Magma
[1] cat [10^Floor((n+1)/2)-2*Floor((n+1)/2)+n-1: n in [1..30]]; // Vincenzo Librandi, Mar 18 2015
-
Mathematica
Select[Range@10000, Mod[IntegerLength[#^#], #] == 0 &] (* Michael De Vlieger, Mar 17 2015 *) Join[{1}, Table[(10^Floor[n/2] - 2 Floor[n/2] + n - 2), {n, 2, 30}]] (* Vincenzo Librandi, Mar 18 2015 *)
-
PARI
isok(n) = !(#digits(n^n) % n); \\ Michel Marcus, Mar 17 2015
Formula
a(n) = 10^floor(n/2) - 2*floor(n/2) + n - 2 = 10^floor(n/2)-(1+(-1)^n)/2 - 1 for n>1, a(1) = 1.
Comments