cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256439 Numbers k such that phi(k-1)+1 divides sigma(k).

Original entry on oeis.org

3, 5, 17, 26, 171, 257, 265, 1921, 9385, 26665, 65537, 263041, 437761, 1057801, 2038648321, 10866583226, 11453097097, 982923711145
Offset: 1

Views

Author

Jaroslav Krizek, Mar 29 2015

Keywords

Comments

Numbers k such that A000010(k-1)+1 divides A000203(k).
Supersequence of Fermat primes (A019434).
Supersequence of A256444. Corresponding values of numbers k(n) = sigma(n) / (phi(n-1)+1) : 2, 2, 2, 2, 4, 2, 4, 4, 4, 4, 2, 4, 4, 4, ... - Jaroslav Krizek, Mar 31 2015
a(19) > 10^13. - Giovanni Resta, Jul 13 2015

Examples

			17 is in the sequence because phi(16) + 1 divides sigma(17); 9 divides 18.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..1000000] | Denominator(SumOfDivisors(n) / (EulerPhi(n-1) + 1)) eq 1 ];
    
  • Maple
    with(numtheory): A256439:=n->`if`(sigma(n) mod (phi(n-1)+1) = 0, n, NULL): seq(A256439(n), n=2..10^5); # Wesley Ivan Hurt, Mar 29 2015
  • Mathematica
    Select[Range@ 1000000, Mod[DivisorSigma[1, #], EulerPhi[# - 1] + 1] == 0 &] (* Michael De Vlieger, Mar 29 2015 *)
  • PARI
    lista(nn) = {for (n=2, nn, if (sigma(n) % (eulerphi(n-1)+1) == 0, print1(n, ", ")););} \\ Michel Marcus, Mar 29 2015

Extensions

a(15)-a(18) from Giovanni Resta, Jul 13 2015