cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256494 Expansion of -x^2*(x^3+x-1) / ((x-1)*(x+1)*(2*x-1)*(x^2+1)).

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 13, 26, 51, 103, 205, 410, 819, 1639, 3277, 6554, 13107, 26215, 52429, 104858, 209715, 419431, 838861, 1677722, 3355443, 6710887, 13421773, 26843546, 53687091, 107374183, 214748365, 429496730, 858993459, 1717986919, 3435973837, 6871947674, 13743895347, 27487790695, 54975581389, 109951162778
Offset: 1

Views

Author

Armands Strazds, Mar 30 2015

Keywords

Comments

Previous name was: Golden Book's Level Leap Sequence.
x-positions a(n) of transition from phase 1 (I I) to 2 (/\) for the Golden Book’s y-position n.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,2,3,7]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-4)-2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 25 2015
  • Mathematica
    Join[{0}, LinearRecurrence[{2, 0, 0, 1, - 2}, {1, 1, 2, 3, 7}, 50]] (* Vincenzo Librandi, Dec 25 2015 *)
  • PARI
    concat(0, Vec(-x^2*(x^3+x-1)/((x-1)*(x+1)*(2*x-1)*(x^2+1)) + O(x^100))) \\ Colin Barker, Apr 09 2015
    
  • PHP
    $r = array(1, -1, 0, -1);
    $a[0] = 0;
    for ($n = 1; $n < 40; $n++) {
    $a[$n] = 2 * $a[$n - 1] + $r[($n - 1) % 4];
    }
    echo(implode(", ", $a));
    

Formula

a(n) = 2 * a(n - 1) + r((n - 1) % 4); r = array(1, -1, 0, -1).
From Colin Barker, Apr 09 2015: (Start)
a(n) = 2*a(n-1)+a(n-4)-2*a(n-5) for n>5.
a(n) = (5+5*(-1)^n-(1+2*i)*(-i)^n-(1-i*2)*i^n+2^(1+n))/20 for n>0 where i=sqrt(-1).
G.f.: -x^2*(x^3+x-1) / ((x-1)*(x+1)*(2*x-1)*(x^2+1)). (End)
E.g.f.: (5*cosh(x) + cosh(2*x) - cos(x) + sinh(2*x) - 2*sin(x) - 5)/10. - Stefano Spezia, May 18 2025

Extensions

New name (using g.f. from Colin Barker) from Joerg Arndt, Dec 26 2015