cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A271980 Numbers k such that 3*k^2 + 39*k + 37 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 63, 64, 66, 68, 69, 70, 71, 72, 79, 84, 86, 88, 89, 90, 91, 92
Offset: 1

Views

Author

Robert Price, Apr 17 2016

Keywords

Comments

From Peter Bala, Apr 16 2018: (Start)
Let P(n) = 3*n^2 + 39*n + 37. The absolute values of the polynomial P(2*n - 29) = 12*n^2 - 270*n + 1429 for n from 0 to 27 are distinct primes, except at n = 14 when the value is 1.
The absolute values of the polynomial 3*P((n - 20)/3) = n^2 - n - 269 for n from 0 to 42 are either prime or 3 times a prime.
The absolute values of the polynomial 3*P((4*n - 89)/3) = 16*n^2 - 556*n + 4561 for n from 0 to 27 are either prime or 3 times a prime. (End)

Examples

			4 is in this sequence since 3*4^2 + 39*4 + 37 = 48+156+37 = 241 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] |IsPrime(3*n^2+39*n+37)]; // Vincenzo Librandi, Apr 19 2018
  • Mathematica
    Select[Range[0, 100], PrimeQ[3*#^2 + 39*# + 37] &]
  • PARI
    isok(n) = isprime(3*n^2 + 39*n + 37); \\ Michel Marcus, Apr 17 2016
    
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(3*n^2+39*n+37), print1(n, ", "))); \\ Altug Alkan, Apr 18 2016
    

A272074 Numbers k such that k^4 + 29*k^2 + 101 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 26, 31, 32, 34, 35, 37, 43, 44, 45, 47, 49, 53, 56, 60, 61, 62, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 81, 84, 85, 89, 90, 91, 93, 96, 99
Offset: 1

Views

Author

Robert Price, Apr 19 2016

Keywords

Examples

			4 is in this sequence since 4^4 + 29*4^2 + 101 = 256+464+101 = 821 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,100],PrimeQ[#^4+29#^2+101]&] (* Harvey P. Dale, Dec 15 2020 *)
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(n^4+29*n^2+101), print1(n, ", "))); \\ Altug Alkan, Apr 19 2016

A271144 Primes of the form 42*k^3 + 270*k^2 - 26436*k + 250703 in order of increasing k.

Original entry on oeis.org

250703, 224579, 199247, 174959, 151967, 130523, 110879, 93287, 77999, 65267, 55343, 48479, 44927, 44939, 48767, 56663, 68879, 85667, 107279, 133967, 165983, 203579, 247007, 296519, 352367, 414803, 484079, 560447, 644159, 735467, 834623, 941879, 1057487
Offset: 1

Views

Author

Robert Price, Apr 23 2016

Keywords

Examples

			151967 is prime and it is in this sequence since 151967 = 42*4^3 + 270*4^2 - 26436*4 + 250703.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[42n^3 + 270n^2 - 26436n + 250703, PrimeQ[#] &]

A271143 Numbers k such that 42*k^3 + 270*k^2 - 26436*k + 250703 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 48, 51, 54, 55, 56, 58, 61, 62, 63, 64, 65, 66, 67, 69, 71, 76, 78, 79, 84, 87, 88, 89, 90, 92
Offset: 1

Views

Author

Robert Price, Apr 23 2016

Keywords

Comments

40 is the first value not in the sequence.

Examples

			4 is in this sequence since 42*4^3 + 270*4^2 - 26436*4 + 250703 = 151967, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[42#^3 + 270#^2 - 26436# + 250703] &]
  • PARI
    is(n)=isprime(42*n^3+270*n^2-26436*n+250703) \\ Charles R Greathouse IV, Feb 17 2017
Showing 1-4 of 4 results.