A256885 a(n) = n*(n + 1)/2 - pi(n), where pi(n) = A000720(n) is the prime counting function.
1, 2, 4, 8, 12, 18, 24, 32, 41, 51, 61, 73, 85, 99, 114, 130, 146, 164, 182, 202, 223, 245, 267, 291, 316, 342, 369, 397, 425, 455, 485, 517, 550, 584, 619, 655, 691, 729, 768, 808, 848, 890, 932, 976, 1021, 1067, 1113, 1161, 1210, 1260, 1311, 1363, 1415, 1469, 1524
Offset: 1
Examples
10 . x 9 . x x 8 . x x x 7 . . x x x 6 . x x x x x 5 . . x x x x x 4 . x x x x x x x 3 . . x x x x x x x 2 . . x x x x x x x x 1 . x x x x x x x x x x 0 .__.__.__.__.__.__.__.__.__.__. 0 1 2 3 4 5 6 7 8 9 10
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Counting Function
- Wikipedia, Prime-counting function
Programs
-
Haskell
a256885 n = a000217 n - a000720 n -- Reinhard Zumkeller, Apr 21 2015
-
Magma
[n*(n + 1)/2 - #PrimesUpTo(n): n in [1..60] ]; // Vincenzo Librandi, Apr 12 2015
-
Maple
with(numtheory)[pi]: A256885:=n->n*(n+1)/2-pi(n): seq(A256885(n), n=1..100);
-
Mathematica
Table[n (n + 1)/2 - PrimePi[n], {n, 1, 50}]
-
PARI
vector(80, n, n*(n+1)/2 - primepi(n)) \\ Michel Marcus, Apr 13 2015
Formula
Extensions
Edited, following the hint by Reinhard Zumkeller to change the offset. - Wolfdieter Lang, Apr 22 2015
Comments