cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257093 a(n) = n*(n+1)*(13*n+2)/6.

Original entry on oeis.org

0, 5, 28, 82, 180, 335, 560, 868, 1272, 1785, 2420, 3190, 4108, 5187, 6440, 7880, 9520, 11373, 13452, 15770, 18340, 21175, 24288, 27692, 31400, 35425, 39780, 44478, 49532, 54955, 60760, 66960, 73568, 80597, 88060, 95970, 104340, 113183, 122512, 132340
Offset: 0

Views

Author

Luce ETIENNE, Apr 16 2015

Keywords

Comments

This sequence gives the number of triangles of all sizes in (5*n^2)-polyiamonds in a tetragonal or hexagonal or heptagonal configuration.
It is the sum of (1/2)*Sum_{j=0..n-1} (n-j)*(5*n+1-j) triangles oriented in one direction and (1/2)*Sum_{j-0..n-1} (n-j)*(5*n-1-3*j) oriented in the opposite direction.
Shäfli's notation: 3.3.3.3.3 for a(1).
The difference between this sequence and A050409(n) equals A000292(n-1).
Also, (1/3)*(A002717(2*n) + A255211(n) - 2*A000330(n)) gives A033994(n): a (5*n^2)-polyiamond in pentagonal configuration that does not belong to this sequence because a(1)=6.
a(n) is odd only when n mod 4 = 1.

Examples

			Second comment a(0) = 0; a(1) = 3 + 2; a(2) = 16 + 12; a(3) = 46 + 36; a(4) = 100 + 80; a(5) = 185 + 150; a(6) = 308 + 252.
		

Crossrefs

Programs

  • Magma
    [n*(n+1)*(13*n+2)/6: n in [0..40]]; // Vincenzo Librandi, Apr 16 2015
  • Mathematica
    Table[n (n + 1) (13 n + 2)/6, {n, 0, 40}] (* Vincenzo Librandi, Apr 16 2015 *)
    CoefficientList[Series[x (5+8x)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,28,82},60] (* Harvey P. Dale, Feb 12 2023 *)

Formula

a(n) = Sum_{j=0..n-1} (n-j)*(5*n-2*j).
From Vincenzo Librandi, Apr 16 2015: (Start)
G.f.: x*(5+8*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
E.g.f.: exp(x)*x*(30 + 54*x + 13*x^2)/6. - Stefano Spezia, Mar 02 2025

Extensions

Corrected by Harvey P. Dale, Feb 12 2023