A257093 a(n) = n*(n+1)*(13*n+2)/6.
0, 5, 28, 82, 180, 335, 560, 868, 1272, 1785, 2420, 3190, 4108, 5187, 6440, 7880, 9520, 11373, 13452, 15770, 18340, 21175, 24288, 27692, 31400, 35425, 39780, 44478, 49532, 54955, 60760, 66960, 73568, 80597, 88060, 95970, 104340, 113183, 122512, 132340
Offset: 0
Examples
Second comment a(0) = 0; a(1) = 3 + 2; a(2) = 16 + 12; a(3) = 46 + 36; a(4) = 100 + 80; a(5) = 185 + 150; a(6) = 308 + 252.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n+1)*(13*n+2)/6: n in [0..40]]; // Vincenzo Librandi, Apr 16 2015
-
Mathematica
Table[n (n + 1) (13 n + 2)/6, {n, 0, 40}] (* Vincenzo Librandi, Apr 16 2015 *) CoefficientList[Series[x (5+8x)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,28,82},60] (* Harvey P. Dale, Feb 12 2023 *)
Formula
a(n) = Sum_{j=0..n-1} (n-j)*(5*n-2*j).
From Vincenzo Librandi, Apr 16 2015: (Start)
G.f.: x*(5+8*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
E.g.f.: exp(x)*x*(30 + 54*x + 13*x^2)/6. - Stefano Spezia, Mar 02 2025
Extensions
Corrected by Harvey P. Dale, Feb 12 2023
Comments