cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257178 Number of 3-Motzkin paths of length n with no level steps at odd level.

Original entry on oeis.org

1, 3, 10, 33, 110, 369, 1247, 4245, 14558, 50295, 175029, 613467, 2165100, 7692345, 27504600, 98941185, 357952580, 1301960925, 4759282415, 17478557925, 64468072820, 238736987535, 887359113700, 3309489922743, 12381998910700, 46460457776739
Offset: 0

Views

Author

Keywords

Examples

			For n=2 we have 10 paths: H(1)H(1), H(1)H(2), H(1)H(3), H(2)H(1), H(2)H(2), H(2)H(3), H(3)H(1), H(3)H(2), H(3)H(3) and UD.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-3*x-Sqrt[(1-3*x)*(1-3*x-4x^2)])/(2*x^2*(1-3*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
  • PARI
    Vec((1-3*x-sqrt((1-3*x)*(1-3*x-4*x^2)))/(2*x^2*(1-3*x)) + O(x^50)) \\ G. C. Greubel, Feb 05 2017

Formula

a(n)= Sum_{i=0..floor(n/2)}3^(n-2i)*C(i)*binomial(n-i,i), where C(n) is the n-th Catalan number A000108.
G.f.: (1-3*z-sqrt((1-3*z)*(1-3*z-4*z^2)))/(2*z^2*(1-3*z)).
a(n) ~ sqrt(5) * 4^(n+1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Conjecture: (n+2)*a(n) +6*(-n-1)*a(n-1) +(5*n+4)*a(n-2) +6*(2*n-3)*a(n-3)=0. - R. J. Mathar, Sep 24 2016
G.f. A(x) satisfies: A(x) = 1/(1 - 3*x) + x^2 * A(x)^2. - Ilya Gutkovskiy, Jun 30 2020