cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A257388 Number of 4-Motzkin paths of length n with no level steps at odd level.

Original entry on oeis.org

1, 4, 17, 72, 306, 1304, 5573, 23888, 102702, 442904, 1915978, 8314480, 36195236, 158067312, 692475053, 3043191200, 13415404246, 59321085720, 263100680926, 1170347803440, 5221037429948, 23356788588752, 104772374565666, 471214329434208, 2124649562373708, 9603094073668208
Offset: 0

Views

Author

Keywords

Examples

			For n=2 we have 17 paths: H(1)H(1), H(1)H(2), H(1)H(3), H(1)H(4), H(2)H(1), H(2)H(2), H(2)H(3), H(2)H(4), H(3)H(1), H(3)H(2), H(3)H(3), H(3)H(4), H(4)H(1), H(4)H(2), H(4)H(3), H(4)H(4) and UD.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2*(1-4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
  • PARI
    x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2*(1-4*x))) \\ G. C. Greubel, Apr 08 2017

Formula

a(n) = Sum_{i=0..floor(n/2)}4^(n-2i)*C(i)*binomial(n-i,i), where C(n) is the n-th Catalan number A000108.
G.f.: (1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2*(1-4*x)).
a(n) ~ sqrt(58+41*sqrt(2)) * 2^(n+1/2) * (1+sqrt(2))^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 22 2015
Conjecture: (n+2)*a(n) +8*(-n-1)*a(n-1) +4*(3*n+1)*a(n-2) +8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Sep 24 2016
G.f. A(x) satisfies: A(x) = 1/(1 - 4*x) + x^2 * A(x)^2. - Ilya Gutkovskiy, Jun 30 2020

A257389 Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at odd level.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 6, 6, 17, 21, 54, 74, 183, 272, 644, 1025, 2342, 3928, 8734, 15264, 33227, 59989, 128484, 238008, 503563, 952038, 1995955, 3835381, 7987092, 15548654, 32223061, 63388488, 130918071, 259724317, 535168956, 1069025128
Offset: 0

Views

Author

Keywords

Examples

			For n=6 we have 6 paths: UDUDUD, H3H3, UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6), a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 2},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Nov 04 2019
  • Maxima
    a(n):=sum(((-1)^(n-3*k)+1)*((binomial((n-k)/2,k) )*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2))),k,0,(n)/3); /* Vladimir Kruchinin, Apr 02 2016 */

Formula

G.f.: (1-x^3-sqrt((1-x^3)*(1-4*x^2-x^3)))/(2*x^2*(1-x^3)).
a(n) = Sum_{k=0..n/3}(((-1)^(n-3*k)+1)*(binomial((n-k)/2,k)*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2)))). - Vladimir Kruchinin, Apr 02 2016
(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6) = 0. - Robert Israel, Nov 04 2019

A257515 Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at odd level.

Original entry on oeis.org

1, 0, 1, 2, 2, 4, 9, 12, 26, 48, 90, 172, 348, 664, 1349, 2680, 5438, 10976, 22510, 45900, 94700, 195032, 404442, 838824, 1748308, 3646368, 7632628, 15994232, 33606168, 70699504, 149050669, 314625264, 665280246, 1408436672, 2986069782, 6337988876
Offset: 0

Views

Author

Keywords

Examples

			For n=6 we have 9 paths: UDUDUD, H3H3 (4 options), UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x^3-Sqrt[(1-2x^3)*(1-4*x^2-2*x^3)])/(2*x^2*(1-2*x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 28 2015 *)
  • Maxima
    a(n):=sum((binomial(2*m,m)/(m+1)*(if mod(n+m,3)=0 then 2^((n-2*m)/3)* binomial((m+n)/3,m) else 0)),m,0,n); /* Vladimir Kruchinin, Mar 07 2016 */
    
  • PARI
    seq(n)={Vec((1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3) + O(x^(3+n))))/(2*x^2*(1-2*x^3)))} \\ Andrew Howroyd, May 01 2020

Formula

G.f.: (1-2*x^3-sqrt((1-2x^3)*(1-4*x^2-2*x^3)))/(2*x^2*(1-2*x^3)).
Conjecture: (n+2)*a(n) +(n+1)*a(n-1) +(n+4)*a(n-2) +4*(-2*n+3)*a(n-3) +4*(-6*n+17)*a(n-4) +4*(-3*n+10)*a(n-5) +4*(3*n-11)*a(n-6) +4*(11*n-50)*a(n-7) +20*(n-6)*a(n-8)=0. - R. J. Mathar, Jun 07 2016

Extensions

Terms a(31) and beyond from Andrew Howroyd, May 01 2020
Showing 1-3 of 3 results.