cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257483 Primes p such that (p mod 8) = (p mod 27).

Original entry on oeis.org

2, 3, 5, 7, 223, 433, 439, 653, 1087, 1297, 1301, 1303, 1733, 1949, 1951, 2161, 2377, 2381, 2383, 2593, 3457, 3461, 3463, 3673, 3677, 3889, 4111, 4327, 4759, 4969, 4973, 5189, 5407, 5623, 5839, 6053, 6269, 6271, 6481, 6701, 6703, 6917, 7129, 7349, 7351, 7561
Offset: 1

Views

Author

Zak Seidov, Apr 26 2015

Keywords

Comments

a(n) is 2, 3 or of the form 216k + r where r is in {1, 5, 7} - David A. Corneth, May 26 2015

Examples

			223 == 7 (mod 8) == 7 (mod 27),  433 == 1 (mod 8) == 1 (mod 27).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(8000) | p mod 8  eq  p mod 27]; // Vincenzo Librandi, Apr 28 2015
    
  • Maple
    select(isprime,[2,3,seq(seq(216*k+r,r=[1,5,7]),k=0..1000)]); # Robert Israel, May 26 2015
  • Mathematica
    Select[Prime@ Range@ 1000, Mod[#, 8] == Mod[#, 27] &] (* Michael De Vlieger, Apr 27 2015 *)
  • PARI
    is(n)=my(k=n%216); (k==1||k==5||k==7) && isprime(n) \\ Charles R Greathouse IV, May 26 2015

Formula

a(n) = A000040(A257482(n)).
a(n) ~ 24n log n. - Charles R Greathouse IV, May 26 2015