cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A084558 a(0) = 0; for n >= 1: a(n) = largest m such that n >= m!.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Comments

For n >= 1, a(n) = the number of significant digits in n's factorial base representation (A007623).
After zero, which occurs once, each n occurs A001563(n) times.
Number of iterations (...(f_4(f_3(f_2(n))))...) such that the result is < 1, where f_j(x):=x/j. - Hieronymus Fischer, Apr 30 2012
For n > 0: a(n) = length of row n in table A108731. - Reinhard Zumkeller, Jan 05 2014

Examples

			a(4) = 2 because 2! <= 4 < 3!.
		

References

  • F. Smarandache, "f-Inferior and f-Superior Functions - Generalization of Floor Functions", Arizona State University, Special Collections.

Crossrefs

Programs

  • Haskell
    a084558 n = a090529 (n + 1) - 1  -- Reinhard Zumkeller, Jan 05 2014
    
  • Maple
    0, seq(m$(m*m!),m=1..5); # Robert Israel, Apr 27 2015
  • Mathematica
    Table[m = 1; While[m! <= n, m++]; m - 1, {n, 0, 104}] (* Jayanta Basu, May 24 2013 *)
    Table[Floor[Last[Reduce[x! == n && x > 0, x]]], {n, 120}] (* Eric W. Weisstein, Sep 13 2024 *)
  • PARI
    a(n)={my(m=0);while(n\=m++,);m-1} \\ R. J. Cano, Apr 09 2018
    
  • Python
    def A084558(n):
      i=1
      while n: i+=1; n//=i
      return(i-1)
    print(list(map(A084558,range(101)))) # Natalia L. Skirrow, May 28 2023

Formula

From Hieronymus Fischer, Apr 30 2012: (Start)
a(n!) = a((n-1)!)+1, for n>1.
G.f.: 1/(1-x)*Sum_{k>=1} x^(k!).
The explicit first terms of the g.f. are: (x+x^2+x^6+x^24+x^120+x^720...)/(1-x).
(End)
Other identities:
For all n >= 0, a(n) = A090529(n+1) - 1. - Reinhard Zumkeller, Jan 05 2014
For all n >= 1, a(n) = A060130(n) + A257510(n). - Antti Karttunen, Apr 27 2015
a(n) ~ log(n^2/(2*Pi)) / (2*LambertW(log(n^2/(2*Pi))/(2*exp(1)))) - 1/2. - Vaclav Kotesovec, Aug 22 2025

Extensions

Name clarified by Antti Karttunen, Apr 27 2015

A060130 Number of nonzero digits in factorial base representation (A007623) of n; minimum number of transpositions needed to compose each permutation in the lists A060117 & A060118.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Examples

			19 = 3*(3!) + 0*(2!) + 1*(1!), thus it is written as "301" in factorial base (A007623). The count of nonzero digits in that representation is 2, so a(19) = 2.
		

Crossrefs

Cf. A227130 (positions of even terms), A227132 (of odd terms).
The topmost row and the leftmost column in array A230415, the left edge of triangle A230417.
Differs from similar A267263 for the first time at n=30.

Programs

  • Maple
    A060130(n) = count_nonfixed(convert(PermUnrank3R(n), 'disjcyc'))-nops(convert(PermUnrank3R(n), 'disjcyc')) or nops(fac_base(n))-nops(positions(0, fac_base(n)))
    fac_base := n -> fac_base_aux(n, 2); fac_base_aux := proc(n, i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i), i+1)), (n mod i)]); fi; end;
    count_nonfixed := l -> convert(map(nops, l), `+`);
    positions := proc(e, ll) local a, k, l, m; l := ll; m := 1; a := []; while(member(e, l[m..nops(l)], 'k')) do a := [op(a), (k+m-1)]; m := k+m; od; RETURN(a); end;
    # For procedure PermUnrank3R see A060117
  • Mathematica
    Block[{nn = 105, r}, r = MixedRadix[Reverse@ Range[2, -1 + SelectFirst[Range@ 12, #! > nn &]]]; Array[Count[IntegerDigits[#, r], k_ /; k > 0] &, nn, 0]] (* Michael De Vlieger, Dec 30 2017 *)
  • Scheme
    (define (A060130 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (if (zero? (remainder n i)) 0 1)))))))
    ;; Two other implementations, that use memoization-macro definec:
    (definec (A060130 n) (if (zero? n) n (+ 1 (A060130 (A257687 n)))))
    (definec (A060130 n) (if (zero? n) n (+ (A257511 n) (A060130 (A257684 n)))))
    ;; Antti Karttunen, Dec 30 2017

Formula

a(0) = 0; for n > 0, a(n) = 1 + a(A257687(n)).
a(0) = 0; for n > 0, a(n) = A257511(n) + a(A257684(n)).
a(n) = A060129(n) - A060128(n).
a(n) = A084558(n) - A257510(n).
a(n) = A275946(n) + A275962(n).
a(n) = A275948(n) + A275964(n).
a(n) = A055091(A060119(n)).
a(n) = A069010(A277012(n)) = A000120(A275727(n)).
a(n) = A001221(A275733(n)) = A001222(A275733(n)).
a(n) = A001222(A275734(n)) = A001222(A275735(n)) = A001221(A276076(n)).
a(n) = A046660(A275725(n)).
a(A225901(n)) = a(n).
A257511(n) <= a(n) <= A034968(n).
A275806(n) <= a(n).
a(A275804(n)) = A060502(A275804(n)). [A275804 gives all the positions where this coincides with A060502.]
a(A276091(n)) = A260736(A276091(n)). [A276091 gives all the positions where this coincides with A260736.]

Extensions

Example-section added, name edited, the old Maple-code moved away from the formula-section, and replaced with all the new formulas by Antti Karttunen, Dec 30 2017

A275725 a(n) = A275723(A002110(1+A084558(n)), n); prime factorization encodings of cycle-polynomials computed for finite permutations listed in the order that is used in tables A060117 / A060118.

Original entry on oeis.org

2, 4, 18, 8, 12, 8, 150, 100, 54, 16, 24, 16, 90, 40, 54, 16, 36, 16, 60, 40, 36, 16, 24, 16, 1470, 980, 882, 392, 588, 392, 750, 500, 162, 32, 48, 32, 270, 80, 162, 32, 108, 32, 120, 80, 72, 32, 48, 32, 1050, 700, 378, 112, 168, 112, 750, 500, 162, 32, 48, 32, 450, 200, 162, 32, 72, 32, 300, 200, 108, 32, 48, 32, 630, 280, 378, 112, 252, 112, 450, 200
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2016

Keywords

Comments

In this context "cycle-polynomials" are single-variable polynomials where the coefficients (encoded with the exponents of prime factorization of n) are equal to the lengths of cycles in the permutation listed with index n in tables A060117 or A060118. See the examples.

Examples

			Consider the first eight permutations (indices 0-7) listed in A060117:
  1 [Only the first 1-cycle explicitly listed thus a(0) = 2^1 = 2]
  2,1 [One transposition (2-cycle) in beginning, thus a(1) = 2^2 = 4]
  1,3,2 [One fixed element in beginning, then transposition, thus a(2) = 2^1 * 3^2 = 18]
  3,1,2 [One 3-cycle, thus a(3) = 2^3 = 8]
  3,2,1 [One transposition jumping over a fixed element, a(4) = 2^2 * 3^1 = 12]
  2,3,1 [One 3-cycle, thus a(5) = 2^3 = 8]
  1,2,4,3 [Two 1-cycles, then a 2-cycle, thus a(6) = 2^1 * 3^1 * 5^2 = 150].
  2,1,4,3 [Two 2-cycles, not crossed, thus a(7) = 2^2 * 5^2 = 100]
and also the seventeenth one at n=16 [A007623(16)=220] where we have:
  3,4,1,2 [Two 2-cycles crossed, thus a(16) = 2^2 * 3^2 = 36].
		

Crossrefs

Cf. A275807 (terms divided by 2).
Cf. also A275733, A275734, A275735 for other such prime factorization encodings of A060117/A060118-related polynomials.

Programs

Formula

a(n) = A275723(A002110(1+A084558(n)), n).
Other identities:
A001221(a(n)) = 1+A257510(n) (for all n >= 1).
A001222(a(n)) = 1+A084558(n).
A007814(a(n)) = A275832(n).
A048675(a(n)) = A275726(n).
A051903(a(n)) = A275803(n).
A056169(a(n)) = A275851(n).
A046660(a(n)) = A060130(n).
A072411(a(n)) = A060131(n).
A056170(a(n)) = A060128(n).
A275812(a(n)) = A060129(n).
a(n!) = 2 * A243054(n) = A000040(n)*A002110(n) for all n >= 1.

A257511 Number of 1's in factorial base representation of n (A007623).

Original entry on oeis.org

0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Crossrefs

Cf. A255411 (numbers n such that a(n) = 0), A255341 (such that a(n) = 1), A255342 (such that a(n) = 2), A255343 (such that a(n) = 3).
Positions of records: A007489.
Cf. also A257510.

Programs

  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++]; m = n; len = i; dList = Table[0, {len}]; Do[currDigit = 0; While[m >= j!, m = m - j!; currDigit++]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; s = Table[FromDigits[factBaseIntDs@ n], {n, 0, 120}];
    First@ DigitCount[#] & /@ s (* Michael De Vlieger, Apr 27 2015, after Alonso del Arte at A007623 *)
    nn = 120; b = Module[{m = 1}, While[Factorial@ m < nn, m++]; MixedRadix[Reverse@ Range[2, m]]]; Table[Count[IntegerDigits[n, b], 1], {n, 0, nn}] (* Michael De Vlieger, Aug 29 2016, Version 10.2 *)
  • Scheme
    (define (A257511 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (floor->exact (/ n i)) (+ 1 i) (+ s (if (= 1 (modulo n i)) 1 0)))))))

Formula

a(0) = 0; for n >= 1, a(n) = A265333(n) + a(A257687(n)). - Antti Karttunen, Aug 29 2016
Other identities and observations. For all n >= 0:
a(n) = A260736(A225901(n)).
a(n) = A001221(A275732(n)) = A001222(A275732(n)).
a(n) = A007814(A275735(n)).
a(n) = A056169(A276076(n)).
a(A007489(n)) = n. [Particularly, A007489(n) gives the position where n first appears.]
a(n) <= A060130(n) <= A034968(n).

A328620 Number of nonleading zeros in primorial base expansion of n, a(0) = 0 by convention.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 23 2019

Keywords

Crossrefs

Cf. A257510 for an analogous sequence.

Programs

  • Mathematica
    a[n_] := Module[{k = n, p = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, If[r == 0, s++]; p = NextPrime[p]]; s]; Array[a, 100, 0] (* Amiram Eldar, Mar 13 2024 *)
  • PARI
    A328620(n) = { my(s=0, p=2); while(n, s += (0==(n%p)); n = n\p; p = nextprime(1+p)); (s); };

Formula

a(n) = A001221(A328612(n)).
a(n) = A079067(A276086(n)).
a(A002110(n)) = n for all n >= 0.

A278225 Filter-sequence for factorial base (cycles in A060117/A060118-permutations): Least number with the same prime signature as A275725.

Original entry on oeis.org

2, 4, 12, 8, 12, 8, 60, 36, 24, 16, 24, 16, 60, 24, 24, 16, 36, 16, 60, 24, 36, 16, 24, 16, 420, 180, 180, 72, 180, 72, 120, 72, 48, 32, 48, 32, 120, 48, 48, 32, 72, 32, 120, 48, 72, 32, 48, 32, 420, 180, 120, 48, 120, 48, 120, 72, 48, 32, 48, 32, 180, 72, 48, 32, 72, 32, 180, 72, 72, 32, 48, 32, 420, 120, 120, 48, 180, 48, 180, 72, 48, 32, 72, 32, 120, 48, 48
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain sequences related to cycle-structures in finite permutations as ordered by lists A060117 / A060118 (and thus also related to factorial base representation, A007623) because it matches only with any such sequence b that can be computed as b(n) = f(A275725(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other filter-sequences related to factorial base: A278234, A278235, A278236.
Sequences that partition N into same or coarser equivalence classes: A048764, A048765, A060129, A060130, A060131, A084558, A275803, A275851, A257510.

Programs

Formula

a(n) = A046523(A275725(n)).

A227187 Numbers n whose factorial base representation A007623(n) contains at least one nonleading zero. (Zero is also included as a(0)).

Original entry on oeis.org

0, 2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 40, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 61, 62, 64, 66, 67, 68, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 88, 90, 91
Offset: 0

Views

Author

Antti Karttunen, Jul 04 2013

Keywords

Crossrefs

Complement: A227157.
The sequence gives all positions n where A208575 is zero and all terms where A257510 (also A257260) are nonzeros.
Cf. A232745 (a subsequence), A232744.
Cf. also A007623, A132371, A153880, A227130, A227132, A256450 (numbers with at least one 1 in their factorial representation).

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; MemberQ[s, 0]]; q[0] = True; Select[Range[0, 100], q] (* Amiram Eldar, Feb 07 2024 *)

Formula

a(0) = 0, a(1) = 2, and for n > 1, if a(n-1) is odd or A257510(a(n-1)) > 1, then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1) + 2. - Antti Karttunen, Apr 29 2015
Other identities:
For all n >= 2, a(A132371(n)) = A000142(n) = n! [See comments in A227157.]
Showing 1-7 of 7 results.