cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A257760 Zeroless numbers n such that the products of the decimal digits of n and n^2 coincide.

Original entry on oeis.org

1, 1488, 3381, 14889, 18489, 181965, 262989, 338646, 358489, 367589, 437189, 438329, 479285, 781839, 964941, 1456589, 1763954, 2579285, 2868489, 3365285, 3419389, 3451988, 3584889, 3625619, 4378829, 4653989, 6868877, 7295986, 9548479, 14529839, 14534488
Offset: 1

Views

Author

Pieter Post, May 07 2015

Keywords

Comments

It is unknown if this sequence is infinite.
Number of terms < 10^n: 1, 1, 1, 3, 5, 15, 29, 75, 211, 583, 1694, ..., . - Robert G. Wilson v, May 25 2015
Also nontrivial numbers n such that the products of the decimal digits of n and n^2 are equal. Trivial solutions are any number which contains a zero in its decimal expansion. - Robert G. Wilson v, May 11 2015

Examples

			1488 is in the sequence since 1488^2 = 2214144 and we have 256 = 1*4*8*8 = 2*2*1*4*1*4*4.
3381 is in the sequence because 3381^2 = 11431161 and 72 = 3*3*8*1 = 1*1*4*3*1*1*6*1.
		

Crossrefs

Subsequence of A052040.

Programs

  • Mathematica
    fQ[n_] := Times @@ IntegerDigits[n] == Times @@ IntegerDigits[n^2] > 0; Select[ Range@ 10000000, fQ] (* Robert G. Wilson v, May 07 2015 *)
  • PARI
    isok(n) = (d = digits(n)) && vecmin(d) && (dd = digits(n^2)) && (prod(k=1, #d, d[k]) == prod(k=1, #dd, dd[k])); \\ Michel Marcus, May 07 2015

A257774 Numbers n such that the products of the decimal digits of n^2 and n^3 coincide, n^2 and n^3 are zeroless.

Original entry on oeis.org

1, 5, 7, 6057, 292839, 1295314, 4897814, 4967471, 5097886, 6010324, 6919146, 7068165, 7189558, 9465077, 15347958, 22842108, 24463917, 26754863, 43378366, 48810128, 48885128, 50833026, 54588458, 54649688, 68093171, 69925865, 69980346, 73390374, 74357144
Offset: 1

Views

Author

Pieter Post, May 08 2015

Keywords

Comments

This sequence is more sporadic than A257760. It appears there is no sequence for zeroless numbers n and n^3 such that the products of the decimal digits coincide, except for the trivial 1.

Examples

			5 is in the sequence since 5^2 = 25 and 5^3 = 125 and we have 2*5 = 1*2*5 = 10 > 0.
6057 is in the sequence since 6057^2 = 36687249 and 6057^3 = 222214667193 and we have 3*6*6*8*7*2*4*9 = 2*2*2*2*1*4*6*6*7*1*9*3 = 435456 > 0.
		

Crossrefs

Programs

  • Mathematica
    pod[n_] := Times@@IntegerDigits@n; Select[Range[10^7], pod[#^3] == pod[#^2] > 0 &] (* Giovanni Resta, May 08 2015 *)

Extensions

Corrected and extended by Giovanni Resta, May 08 2015

A257968 Zeroless numbers n such that the product of digits of n, the product of digits of n^2 and the product of digits of n^3 form a geometric progression.

Original entry on oeis.org

1, 2, 38296, 151373, 398293, 422558, 733381, 971973, 2797318, 3833215, 6988327, 7271256, 8174876, 8732657, 9872323, 9981181, 11617988, 11798921, 14791421, 15376465, 15487926, 15625186, 16549885, 18543639, 21316582, 21492828, 22346329, 22867986, 23373644
Offset: 1

Views

Author

Pieter Post, May 15 2015

Keywords

Comments

This sequence appears to be infinite.

Examples

			38296 is in the sequence because the pod equals 2592 (=3*8*2*9*6), pod(38296^2) is 622080, pod(38296^3) is 149299200. 2592*240 = 622080 => 622080*240 = 149299200.
		

Crossrefs

Cf. A052382 (zeroless numbers), A007954 (product of digits).

Programs

  • Mathematica
    pod[n_]:=Times@@IntegerDigits@n; Select[Range[10^8], pod[#^3] pod[#] == pod[#^2]^2 >0 &] (* Vincenzo Librandi, May 16 2015 *)
  • PARI
    pod(n) = my(d = digits(n)); prod(k=1, #d, d[k]);
    isok(n) = (pd = pod(n)) && (pdd = pod(n^2)) && (pdd/pd == pod(n^3)/pdd); \\ Michel Marcus, May 30 2015
  • Python
    def pod(n):
        kk = 1
        while n > 0:
            kk= kk*(n%10)
            n =int(n//10)
        return kk
    for i in range (1,10**7):
        if pod(i**3)*pod(i)==pod(i**2)**2 and pod(i**2)!=0:
            print (i, pod(i),pod(i**2),pod(i**3),pod(i**2)//pod(i))
    

Formula

pod(n^3)/pod(n^2)=pod(n^2)/pod(n), where pod(n) = A007954(n).

Extensions

a(17)-a(29) from Giovanni Resta, May 15 2015

A258231 Numbers n such that both n and n squared contain exactly the same digits, and n is not divisible by 10.

Original entry on oeis.org

1, 4762, 4832, 10376, 10493, 11205, 12385, 14829, 23506, 24605, 26394, 34196, 36215, 48302, 49827, 68474, 71205, 72576, 74528, 79286, 79603, 79836, 94583, 94867, 96123, 98376, 100469, 100496, 100498, 100499, 100946, 102245, 102953, 103265, 103479, 103756
Offset: 1

Views

Author

Harvey P. Dale, Apr 23 2016

Keywords

Comments

If n is in this sequence, then n*10^k also satisfies the first portion of the definition for all k >= 0.

Examples

			4832 is a term because 4832 squared = 23348224 which contains exactly the same digits as 4832.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[200000],ContainsExactly[IntegerDigits[ #], IntegerDigits[ #^2]]&], !Divisible[#,10]&]
  • Python
    A258231_list = [n for n in range(10**6) if n % 10 and set(str(n)) == set(str(n**2))] # Chai Wah Wu, Apr 23 2016
Showing 1-4 of 4 results.