cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257890 Expansion of the g.f. (x^2-x+1)*(x^2-3*x+3)/(x-1)^6.

Original entry on oeis.org

3, 12, 34, 80, 166, 314, 553, 920, 1461, 2232, 3300, 4744, 6656, 9142, 12323, 16336, 21335, 27492, 34998, 44064, 54922, 67826, 83053, 100904, 121705, 145808, 173592, 205464, 241860, 283246, 330119, 383008, 442475, 509116, 583562, 666480, 758574, 860586
Offset: 0

Views

Author

R. J. Mathar, May 12 2015

Keywords

Comments

Absolute values of the 5th column of A220074.
Convolution of A000124 and the sequence 3, 6, 10, 15 (the triangular numbers A000217 without the first two entries).

Crossrefs

Programs

  • Magma
    [(n+1)*(n^4+14*n^3+91*n^2+254*n+360)/120: n in [0..40]]; // Vincenzo Librandi, May 12 2015
    
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 12, 34, 80, 166, 314}, 50] (* Vincenzo Librandi, May 12 2015 *)
  • PARI
    Vec((x^2-x+1)*(x^2-3*x+3)/(x-1)^6 + O(x^50)) \\ Michel Marcus, Jan 28 2016

Formula

G.f.: (x^2-x+1)*(x^2-3*x+3)/(x-1)^6.
a(n) = A000292(n+1) + (n+1) + A000389(n+5).
a(n) = (n+1)*(n^4 +14*n^3 +91*n^2 +254*n +360)/120.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>6. - Wesley Ivan Hurt, Jan 27 2016
E.g.f.: (360 + 1080*x + 780*x^2 + 220*x^3 + 25*x^4 + x^5)*exp(x)/120. - G. C. Greubel, Nov 24 2017