A258032 Primes p such that p^3 with the rightmost digit removed is also prime.
3, 17, 53, 113, 157, 233, 257, 277, 353, 359, 379, 397, 677, 877, 997, 1039, 1217, 1439, 1613, 1697, 1879, 1973, 1997, 2273, 2417, 2459, 2777, 3257, 3413, 3499, 3517, 3697, 3779, 4073, 4157, 4177, 4339, 4973, 4999, 5077, 5197, 5279, 5639, 5813, 5897, 6277, 6379
Offset: 1
Examples
a(2) = 17 is prime: 17^3 = 4913. Removing rightmost digit gives 491 which is prime. a(3) = 53 is prime: 53^3 = 148877. Removing rightmost digit gives 14887 which is prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a258032 n = a258032_list !! (n-1) a258032_list = filter ((== 1) . a010051' . flip div 10. (^ 3)) a000040_list -- Reinhard Zumkeller, May 18 2015
-
Magma
[p: p in PrimesUpTo(6500) |IsPrime(Floor(p^3/10))]; // Vincenzo Librandi, May 17 2015
-
Mathematica
Select[Prime[Range[1000]], PrimeQ[Floor[(#^3)/10]] &]
-
PARI
forprime(p=1,10000, if(isprime(floor((p^3)/10)), print1(p,", ")))