cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258219 A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 10, 25, 1, 4, 18, 74, 208, 1, 5, 28, 153, 706, 2146, 1, 6, 40, 268, 1638, 8162, 26368, 1, 7, 54, 425, 3172, 20898, 110410, 375733, 1, 8, 70, 630, 5500, 44164, 307908, 1708394, 6092032, 1, 9, 88, 889, 8838, 82850, 702844, 5134293, 29752066, 110769550
Offset: 0

Views

Author

Alois P. Heinz, May 23 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.
Conjecture: the g.f. G(k,x) for the k-th column satisfies the Riccati differential equation 2*x^2*d/dx(G(k,x)) + 1 + (k*x - 1)*G(k,x) + x*G^2(k,x) = 0 and hence, by Stokes 1982, has the continued fraction representation G(k,x) = 1/(1 - (k+1)*x/(1 - 3*x/(1 - (k+3)*x/(1 - 5*x/(1 - (k+5)*x/(1 - 7*x/(1 - ...))))))) of Stieltjes type. - Peter Bala, Jul 28 2022

Examples

			Square array A(n,k) begins:
     1,    1,     1,     1,     1,      1, ...
     1,    2,     3,     4,     5,      6, ...
     4,   10,    18,    28,    40,     54, ...
    25,   74,   153,   268,   425,    630, ...
   208,  706,  1638,  3172,  5500,   8838, ...
  2146, 8162, 20898, 44164, 82850, 143046, ...
  ...
		

Crossrefs

Columns k=0-2 give: A005411 (for n>0), A000698(n+1), A005412(n+1).
Rows n=0-2 give: A000012, A000027(k+1), A028552(k+1).
Main diagonal gives A292693.

Programs

  • Maple
    b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
                     + b(x-1, y+1, true, k)  ))
        end:
    A:= (n,k)-> b(2*n, 0, false, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y -1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258220(n,i).