A258219 A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 2, 4, 1, 3, 10, 25, 1, 4, 18, 74, 208, 1, 5, 28, 153, 706, 2146, 1, 6, 40, 268, 1638, 8162, 26368, 1, 7, 54, 425, 3172, 20898, 110410, 375733, 1, 8, 70, 630, 5500, 44164, 307908, 1708394, 6092032, 1, 9, 88, 889, 8838, 82850, 702844, 5134293, 29752066, 110769550
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, ... 4, 10, 18, 28, 40, 54, ... 25, 74, 153, 268, 425, 630, ... 208, 706, 1638, 3172, 5500, 8838, ... 2146, 8162, 20898, 44164, 82850, 143046, ... ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Wikipedia, Feynman diagram
- Wikipedia, Lattice path
Crossrefs
Programs
-
Maple
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1) + b(x-1, y+1, true, k) )) end: A:= (n,k)-> b(2*n, 0, false, k): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y -1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
Formula
A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258220(n,i).
Comments