A258220
T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258219(n,i); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 4, 6, 1, 25, 49, 15, 1, 208, 498, 217, 28, 1, 2146, 6016, 3360, 635, 45, 1, 26368, 84042, 56728, 13997, 1475, 66, 1, 375733, 1332661, 1046619, 316281, 43974, 2954, 91, 1, 6092032, 23660034, 21053089, 7479444, 1283817, 114576, 5334, 120, 1
Offset: 0
Triangle T(n,k) begins:
: 1;
: 1, 1;
: 4, 6, 1;
: 25, 49, 15, 1;
: 208, 498, 217, 28, 1;
: 2146, 6016, 3360, 635, 45, 1;
: 26368, 84042, 56728, 13997, 1475, 66, 1;
Column k=0 gives
A005411 (for n>0).
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n, k)-> b(2*n, 0, false, k):
T:= (n, k)-> add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!:
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y - 1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; T [n_, k_] := Sum[A[n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}]/k!; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, translated from Maple *)
A000698
A problem of configurations: a(0) = 1; for n>0, a(n) = (2n-1)!! - Sum_{k=1..n-1} (2k-1)!! a(n-k). Also the number of shellings of an n-cube, divided by 2^n n!.
Original entry on oeis.org
1, 1, 2, 10, 74, 706, 8162, 110410, 1708394, 29752066, 576037442, 12277827850, 285764591114, 7213364729026, 196316804255522, 5731249477826890, 178676789473121834, 5925085744543837186, 208256802758892355202, 7734158085942678174730
Offset: 0
G.f. = 1 + x + 2*x^2 + 10*x^3 + 74*x^4 + 706*x^5 + 8162*x^6 + 110410*x^7 + ...
- Dubois C., Giorgetti A., Genestier R. (2016) Tests and Proofs for Enumerative Combinatorics. In: Aichernig B., Furia C. (eds) Tests and Proofs. TAP 2016. Lecture Notes in Computer Science, vol 9762. Springer.
- R. W. Robinson, Counting irreducible Feynman diagrams exactly and asymptotically, Abstracts Amer. Math. Soc., 2002, #975-05-270.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Arques and J.-F. Beraud, Rooted maps on orientable surfaces, Riccati's equation and continued fractions, Discrete Math., 215 (2000), 1-12.
- F. Battaglia and T. F. George, A Pascal type triangle for the number of topologically distinct many-electron Feynman diagrams, J. Math. Chem. 2 (1988) 241-247.
- S. Birdsong and G. Hetyei, A Gray Code for the Shelling Types of the Boundary of a Hypercube, arXiv preprint arXiv:1111.4710 [math.CO], 2011.
- S. Birdsong and G. Hetyei, A Gray Code for the Shelling Types of the Boundary of a Hypercube, Discrete Math. 313 (2013), no. 3, 258-268. MR2995390.
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts)
- Jonathan Burns and Tilahun Muche, Counting Irreducible Double Occurrence Words, arXiv preprint arXiv:1105.2926 [math.CO], 2011, Lemma 3.2.
- Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, Disc. Appl. Math. 161 (2013) 1378-1394
- J. Courtiel, K. Yeats, and N. Zeilberger, Connected chord diagrams and bridgeless maps, arXiv:1661.04611, Proposition 13.
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, (1978), 1939-1949, (eq 3.34 and fig 2b). DOI:10.1103/PhysRevD.18.1939
- M. A. Deryagina and A. D. Mednykh, On the enumeration of circular maps with given number of edges, Siberian Mathematical Journal, 54, No. 6, 2013, 624-639.
- F. Disanto and N. A. Rosenberg, Coalescent histories for lodgepole species trees, J. Comput. Biol. 22 (2015), 918-929.
- S. Dulucq, Etude combinatoire de problèmes d'énumération, d'algorithmique sur les arbres et de codage par des mots, a thesis presented to l'Université de Bordeaux I, 1987. (Annotated scanned copy)
- Trinh Khanh Duy and Tomoyuki Shirai, The mean spectral measures of random Jacobi matrices related to Gaussian beta ensembles, arXiv:1504.06904 [math.SP], 2015.
- G. Edgar, Transseries for beginners, arXiv:0801.4877v5 [math.RA], 2008-2009.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Ali Assem Mahmoud, On the Asymptotics of Connected Chord Diagrams, University of Waterloo (Ontario, Canada 2019).
- Ali Assem Mahmoud and Karen Yeats, Connected Chord Diagrams and the Combinatorics of Asymptotic Expansions, arXiv:2010.06550 [math.CO], 2020.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 292.
- R. J. Mathar, Table of Feynman Diagrams of the Interacting Fermion Green's Function, Int. J. Quant. Chem. 107 (2007) 1975. Also on arXiv, arXiv:physics/0512022 [physics.atom-ph], 2015-2016.
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019), Section VII.
- L. G. Molinari, Hedin's equations and enumeration of Feynman diagrams, Phys. Rev. B, 71 (2005), 113102.
- A. Prunotto, W. M. Alberico, and P. Czerski, Feynman diagrams and rooted maps, Open Phys. 16 (2018) 149-167.
- J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25.
- J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25. [Annotated, corrected, scanned copy]
- Wikipedia, Feynman diagram
- Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Rutgers Experimental Math Seminar, Sep 13 2018. Part 2 is vimeo.com/289910554.
- P. Zinn-Justin and J.-B. Zuber, Matrix integrals and the generation and counting of virtual tangles and links, arXiv:math-ph/0303049, 2003.
-
A006882 := proc(n) option remember; if n <= 1 then 1 else n*procname(n-2); fi; end;
A000698:=proc(n) option remember; global df; local k; if n=0 then RETURN(1); fi; A006882(2*n-1) - add(A006882(2*k-1)*A000698(n-k),k=1..n-1); end;
A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end; # R. J. Mathar, Apr 24 2006
# alternative Maple program:
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> `if`(n=0, 1, b(2*n-2, 0, false)):
seq(a(n), n=0..25); # Alois P. Heinz, May 23 2015
a_list := proc(len) local n, A; if len=1 then return [1] fi: A := Array(-1..len-2); A[-1] := 1; A[0] := 1; for n to len-2 do A[n] := (2*n-1)*A[n-1]+add(A[j]*A[n-j-1], j=0..n-1) od: convert(A, list) end: a_list(20); # Peter Luschny, Jul 18 2017
-
a[n_] := a[n] = (2n - 1)!! - Sum[ a[n - k](2k - 1)!!, {k, n-1}]; Array[a, 18, 0] (* Ignacio D. Peixoto, Jun 23 2006 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 2 - 1 / Sum[ (2 k - 1)!! x^k, {k, 0, n}], {x, 0, n}]]; (* Michael Somos, Nov 16 2011 *)
a[n_]:= SeriesCoefficient[1+x(1/x+(E^((1/2)/x) Sqrt[2/\[Pi]] Sqrt[-(1/x)])/Erfc[Sqrt[-(1/x)]/Sqrt[2]]), {x,0,n}, Assumptions -> x >0](* Robert Coquereaux, Sep 14 2014 *)
max = 20; g = t/Fold[1 - ((t + #2)*z)/#1 &, 1, Range[max, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; a[0] = 1; a[n_] := Sum[T[n-1, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2016, after Philippe Deléham *)
-
{a(n) = if( n<0, 0, polcoeff( 2 - 1 / sum( k=0, n, x^k * (2*k)! /(2^k * k!), x * O(x^n)), n))}; /* Michael Somos, Feb 08 2011 */
-
{a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
-
from sympy import factorial2, cacheit
@cacheit
def a(n): return 1 if n == 0 else factorial2(2*n - 1) - sum(factorial2(2*k - 1)*a(n - k) for k in range(1, n))
[a(n) for n in range(51)] # Indranil Ghosh, Jul 18 2017
Formula corrected by Ignacio D. Peixoto, Jun 23 2006
A005411
Number of non-vanishing Feynman diagrams of order 2n for the electron or the photon propagators in quantum electrodynamics.
Original entry on oeis.org
1, 1, 4, 25, 208, 2146, 26368, 375733, 6092032, 110769550, 2232792064, 49426061818, 1192151302144, 31123028996164, 874428204384256, 26308967412122125, 843984969276915712, 28757604639850111894, 1037239628039528906752, 39481325230750749160462
Offset: 0
G.f. = 1 + x + 4*x^2 + 25*x^3 + 208*x^4 + 2146*x^5 + 26368*x^6 + 375733*x^7 + ... [Deleted g.f. restored by _N. J. A. Sloane_, Jan 30 2016]
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Michael Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, arXiv:1703.00840 [hep-th], 2017.
- Rémi Bottinelli, Laura Ciobanu, and Alexander Kolpakov, Three-dimensional maps and subgroup growth, manuscripta math. (2021).
- L. Ciobanu and A. Kolpakov, Three-dimensional maps and subgroup growth, arXiv:1712.01418 [math.GR], 2017.
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, (1978), 1939-1949. DOI:10.1103/PhysRevD.18.1939
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 294.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Wikipedia, Feynman diagram
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x/y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20); # Alois P. Heinz, May 21 2015
-
a[n_] := Module[{A}, A[1] = 1; A[k_] := A[k] = (2*k-4)*A[k-1]+Sum[A[j]*A[k-j], {j, 1, k-1}]; A[n]]; Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Feb 27 2014, after Michael Somos *)
a[ n_] := Module[{m = n + 1, u}, If[ n < 2, Boole[n >= 0], u = Range[m]; Do[ u[[k]] = (2 k - 4) u[[k - 1]] + Sum[ u[[j]] u[[k - j]], {j, k - 1}], {k, 2, m}]; u[[m]]]]; (* Michael Somos, Feb 27 2014 *)
a[n_]:=SeriesCoefficient[(1-BesselK[1,-(1/(4 g^2))]/BesselK[0,-(1/(4 g^2))])/(2 g^2),{g,0,2*n}]; (* Robert Coquereaux, Sep 05 2014 *)
-
{a(n) = my(A); if( n<1, n==0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 4) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
a(0)=1 prepended, programs and formulas edited by
Alois P. Heinz, Jun 22 2015
A005412
Number of non-vanishing Feynman diagrams of order 2n for the vacuum polarization (the proper two-point function of the photon) and for the self-energy (the proper two-point function of the electron) in quantum electrodynamics (QED).
Original entry on oeis.org
1, 3, 18, 153, 1638, 20898, 307908, 5134293, 95518278, 1961333838, 44069970348, 1075902476058, 28367410077468, 803551902237828, 24342558819042888, 785445178323709773, 26896354975287884358, 974297972094661642518, 37225733779871789177628, 1496237868417003741147438
Offset: 1
x + 3*x^2 + 18*x^3 + 153*x^4 + 1638*x^5 + 20898*x^6 + 307908*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..250
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, (1978), 1939-1949. DOI:10.1103/PhysRevD.18.1939
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 293.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Wikipedia, Feynman diagram
-
a005412 n = a005412_list !! (n-1)
a005412_list = 1 : f 2 [1] where
f v ws@(w:_) = y : f (v + 2) (y : ws) where
y = v * w + (sum $ zipWith (*) ws $ reverse ws)
-- Reinhard Zumkeller, Jan 24 2014
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+2*y)/y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n-2, 0, false):
seq(a(n), n=1..25); # Alois P. Heinz, May 23 2015
-
a[n_]:=SeriesCoefficient[1 - (2*x)/(1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))]),{x,0,n}] (* Robert Coquereaux, Sep 12 2014 *)
Clear[a]; a[1] = 1; a[n_]:= a[n] = (2*n-2)*a[n-1] + Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 2) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
A258222
A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (k*x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 10, 5, 1, 4, 24, 74, 14, 1, 5, 44, 297, 706, 42, 1, 6, 70, 764, 4896, 8162, 132, 1, 7, 102, 1565, 17924, 100278, 110410, 429, 1, 8, 140, 2790, 47650, 527844, 2450304, 1708394, 1430, 1, 9, 184, 4529, 104454, 1831250, 18685164, 69533397, 29752066, 4862
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 2, 3, 4, 5, 6, ...
: 2, 10, 24, 44, 70, 102, ...
: 5, 74, 297, 764, 1565, 2790, ...
: 14, 706, 4896, 17924, 47650, 104454, ...
: 42, 8162, 100278, 527844, 1831250, 4953222, ...
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n, k)-> b(2*n, 0, false, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1] + b[x - 1, y + 1, True, k]]];
A [n_, k_] := b[2*n, 0, False, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A292693
Sum over all Dyck paths of semilength n of products over all peaks p of (x_p+n*y_p)/y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 2, 18, 268, 5500, 143046, 4491340, 164927288, 6926613912, 327225762250, 17166979868764, 989951268341124, 62226648527948008, 4234070369464440974, 310027061374942635000, 24305529829528548674800, 2031272969339630171158576, 180267634530033586511045778
Offset: 0
Showing 1-6 of 6 results.
Comments