Original entry on oeis.org
1, 2, 11, 90, 952, 12203, 182677, 3118314, 59688447, 1265193199, 29408221404, 743677646836, 20325564686926, 597051775012306, 18758388926380409, 627712133246362442, 22288938527631882996, 837033514431748421053, 33146037056721682537319, 1380365444443138768970878
Offset: 0
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n, k)-> b(2*n, 0, false, k):
T:= proc(n,k) option remember;
add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!
end:
a:= proc(n) option remember; add(T(n,k), k=0..n) end:
seq(a(n), n=0..25);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0,
If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (x + k*y)/y, 1]
+ b[x - 1, y + 1, True, k]]];
A[n_, k_] := b[2*n, 0, False, k];
T[n_, k_] := Sum[A[n, i]*(-1)^(k - i)*Binomial[k, i], {i, 0, k}]/k!;
a[n_] := Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 28 2022, after Alois P. Heinz *)
Original entry on oeis.org
1, 6, 217, 13997, 1283817, 151778430, 21902350480, 3726598826676, 729894290301789, 161683308639785288, 39960246577221138239, 10900687898284398341055, 3253179971490906621196740, 1054372896576358319473872858, 368810384314446516250937494104
Offset: 0
A005411
Number of non-vanishing Feynman diagrams of order 2n for the electron or the photon propagators in quantum electrodynamics.
Original entry on oeis.org
1, 1, 4, 25, 208, 2146, 26368, 375733, 6092032, 110769550, 2232792064, 49426061818, 1192151302144, 31123028996164, 874428204384256, 26308967412122125, 843984969276915712, 28757604639850111894, 1037239628039528906752, 39481325230750749160462
Offset: 0
G.f. = 1 + x + 4*x^2 + 25*x^3 + 208*x^4 + 2146*x^5 + 26368*x^6 + 375733*x^7 + ... [Deleted g.f. restored by _N. J. A. Sloane_, Jan 30 2016]
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Michael Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, arXiv:1703.00840 [hep-th], 2017.
- Rémi Bottinelli, Laura Ciobanu, and Alexander Kolpakov, Three-dimensional maps and subgroup growth, manuscripta math. (2021).
- L. Ciobanu and A. Kolpakov, Three-dimensional maps and subgroup growth, arXiv:1712.01418 [math.GR], 2017.
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, (1978), 1939-1949. DOI:10.1103/PhysRevD.18.1939
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 294.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Wikipedia, Feynman diagram
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x/y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20); # Alois P. Heinz, May 21 2015
-
a[n_] := Module[{A}, A[1] = 1; A[k_] := A[k] = (2*k-4)*A[k-1]+Sum[A[j]*A[k-j], {j, 1, k-1}]; A[n]]; Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Feb 27 2014, after Michael Somos *)
a[ n_] := Module[{m = n + 1, u}, If[ n < 2, Boole[n >= 0], u = Range[m]; Do[ u[[k]] = (2 k - 4) u[[k - 1]] + Sum[ u[[j]] u[[k - j]], {j, k - 1}], {k, 2, m}]; u[[m]]]]; (* Michael Somos, Feb 27 2014 *)
a[n_]:=SeriesCoefficient[(1-BesselK[1,-(1/(4 g^2))]/BesselK[0,-(1/(4 g^2))])/(2 g^2),{g,0,2*n}]; (* Robert Coquereaux, Sep 05 2014 *)
-
{a(n) = my(A); if( n<1, n==0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 4) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
a(0)=1 prepended, programs and formulas edited by
Alois P. Heinz, Jun 22 2015
A258219
A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 10, 25, 1, 4, 18, 74, 208, 1, 5, 28, 153, 706, 2146, 1, 6, 40, 268, 1638, 8162, 26368, 1, 7, 54, 425, 3172, 20898, 110410, 375733, 1, 8, 70, 630, 5500, 44164, 307908, 1708394, 6092032, 1, 9, 88, 889, 8838, 82850, 702844, 5134293, 29752066, 110769550
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
4, 10, 18, 28, 40, 54, ...
25, 74, 153, 268, 425, 630, ...
208, 706, 1638, 3172, 5500, 8838, ...
2146, 8162, 20898, 44164, 82850, 143046, ...
...
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n,k)-> b(2*n, 0, false, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y -1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
A258223
T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258222(n,i); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 8, 3, 5, 69, 77, 15, 14, 692, 1749, 890, 105, 42, 8120, 41998, 41909, 12039, 945, 132, 110278, 1114808, 1944225, 1018865, 186594, 10395, 429, 1707965, 33058519, 94833341, 80595226, 25798856, 3260067, 135135, 1430, 29750636, 1093994697, 4979407614, 6439957299, 3201618970, 687652446, 63390060, 2027025
Offset: 0
Triangle T(n,k) begins:
: 1;
: 1, 1;
: 2, 8, 3;
: 5, 69, 77, 15;
: 14, 692, 1749, 890, 105;
: 42, 8120, 41998, 41909, 12039, 945;
: 132, 110278, 1114808, 1944225, 1018865, 186594, 10395;
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n, k)-> b(2*n, 0, false, k):
T:= (n, k)-> add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!:
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x-1, y-1, False, k]*If[t, (k*x + y)/y, 1] + b[x-1, y+1, True, k]]];
A[n_, k_] := b[2*n, 0, False, k];
T[n_, k_] := Sum[A[n, i]*(-1)^(k - i)*Binomial[k, i], {i, 0, k}]/k!;
Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* Jean-François Alcover, Jun 06 2018, from Maple *)
Showing 1-5 of 5 results.
Comments