A258307
T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258306(n,i); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
Original entry on oeis.org
1, 1, 2, 1, 5, 2, 14, 9, 1, 43, 28, 3, 141, 114, 21, 1, 490, 421, 82, 4, 1785, 1750, 442, 38, 1, 6789, 7114, 1941, 180, 5, 26809, 30854, 9868, 1210, 60, 1, 109632, 134239, 46337, 6191, 335, 6, 462755, 609276, 235035, 37321, 2700, 87, 1, 2012441, 2800134, 1157603, 199424, 15806, 560, 7
Offset: 0
Triangle T(n,k) begins:
: 1;
: 1;
: 2, 1;
: 5, 2;
: 14, 9, 1;
: 43, 28, 3;
: 141, 114, 21, 1;
: 490, 421, 82, 4;
: 1785, 1750, 442, 38, 1;
: 6789, 7114, 1941, 180, 5;
: 26809, 30854, 9868, 1210, 60, 1;
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+b(x-1, y, false, k) +b(x-1, y+1, true, k)))
end:
A:= (n, k)-> b(n, 0, false, k):
T:= proc(n, k) option remember;
add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!
end:
seq(seq(T(n, k), k=0..n/2), n=0..13);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (x + k*y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]];
A[n_, k_] := b[n, 0, False, k];
T[n_, k_] := T[n, k] = Sum[A[n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}]/ k!;
Table[T[n, k], {n, 0, 13}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jun 06 2018, from Maple *)
A140456
a(n) is the number of indecomposable involutions of length n.
Original entry on oeis.org
1, 1, 1, 3, 7, 23, 71, 255, 911, 3535, 13903, 57663, 243871, 1072031, 4812575, 22278399, 105300287, 510764095, 2527547455, 12794891007, 66012404863, 347599231103, 1863520447103, 10178746224639, 56548686860543, 319628408814847, 1835814213846271
Offset: 1
The unique indecomposable involution of length 3 is 321. The indecomposable involutions of length 4 are 3412, 4231 and 4321.
G.f. = x + x^2 + 3*x^3 + 7*x^4 + 23*x^5 + 71*x^6 + 255*x^7 + 911*x^8 + ...
- Alois P. Heinz, Table of n, a(n) for n = 1..800 (terms n = 1..50 from Joel B. Lewis)
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Claudia Malvenuto and Christophe Reutenauer, Primitive Elements of the Hopf Algebras of Tableaux, arXiv:2010.06731 [math.CO], 2020.
Cf.
A000085 (involutions),
A000698 (indecomposable fixed-point free involutions), and
A003319 (indecomposable permutations).
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1)
+ b(x-1, y, false) + b(x-1, y+1, true)))
end:
a:= n-> `if`(n=1, 1, b(n-2, 0, false)):
seq(a(n), n=1..35); # Alois P. Heinz, May 24 2015
-
CoefficientList[Series[1 - 1/Total[CoefficientList[Series[E^(x + x^2/2), {x, 0, 50}], x] * Range[0, 50]! * x^Range[0, 50]], {x, 0, 50}], x]
A258309
A(n,k) is the sum over all Motzkin paths of length n of products over all peaks p of (k*x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 9, 1, 1, 5, 10, 23, 21, 1, 1, 6, 13, 43, 71, 51, 1, 1, 7, 16, 69, 151, 255, 127, 1, 1, 8, 19, 101, 261, 703, 911, 323, 1, 1, 9, 22, 139, 401, 1485, 2983, 3535, 835, 1, 1, 10, 25, 183, 571, 2691, 6973, 14977, 13903, 2188
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 2, 3, 4, 5, 6, 7, 8, ...
: 4, 7, 10, 13, 16, 19, 22, ...
: 9, 23, 43, 69, 101, 139, 183, ...
: 21, 71, 151, 261, 401, 571, 771, ...
: 51, 255, 703, 1485, 2691, 4411, 6735, ...
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
+b(x-1, y, false, k) +b(x-1, y+1, true, k)))
end:
A:= (n, k)-> b(n, 0, false, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]];
A[n_, k_] := b[n, 0, False, k];
Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 04 2017, translated from Maple *)
A258312
Sum over all Motzkin paths of length n of products over all peaks p of x_p/y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 2, 5, 14, 43, 141, 490, 1785, 6789, 26809, 109632, 462755, 2012441, 8997402, 41297927, 194306557, 936082502, 4612095475, 23219012907, 119328025012, 625545408219, 3342370197206, 18190297736313, 100768960522871, 567886743369378, 3253833477309093
Offset: 0
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false) *`if`(t, x/y, 1)
+b(x-1, y, false)+b(x-1, y+1, true)))
end:
a:= n-> b(n, 0, false):
seq(a(n), n=0..30);
-
b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, b[x-1, y-1, False]*If[t, x/y, 1] + b[x-1, y, False] + b[x-1, y+1, True]]];
a[n_] := b[n, 0, False];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 10 2017, translated from Maple *)
A266386
Sum over all Motzkin paths of length n of products over all peaks p of (x_p+n*y_p)/y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 4, 11, 62, 243, 1575, 7721, 54985, 316407, 2427309, 15798261, 129072167, 927577835, 8008756470, 62499194297, 567017727805, 4747097031375, 45051331382395, 400942371431173, 3965769826314532, 37252002703698003, 382848953452815450, 3774255187367667473
Offset: 0
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+b(x-1, y, false, k) +b(x-1, y+1, true, k)))
end:
a:= n-> b(n, 0, false, n):
seq(a(n), n=0..30);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (x + k*y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]];
a[n_] := b[n, 0, False, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 10 2017, translated from Maple *)
Showing 1-5 of 5 results.
Comments