cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A152736 Triangle read by rows: M*Q, where M = an infinite lower triangular matrix with A140456 in every column: (1, 1, 1, 3, 7, 23, 71, ...) and Q = a matrix with A000085 as the main diagonal the rest zeros.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 2, 4, 7, 3, 2, 4, 10, 23, 7, 6, 4, 10, 26, 71, 23, 14, 12, 10, 26, 76, 255, 71, 46, 28, 30, 26, 76, 232, 911, 255, 142, 92, 70, 78, 76, 232, 764, 3535, 911, 510, 284, 230, 182, 228, 232, 764, 2620
Offset: 1

Views

Author

Gary W. Adamson, Dec 12 2008

Keywords

Comments

An eigentriangle.
Row sums = A000085 starting with offset 1.
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle:
      1;
      1,    1;
      1,    1,    2;
      3,    1,    2,    4;
      7,    3,    2,    4,  10;
     23,    7,    6,    4,  10,  26;
     71,   23,   14,   12,  10,  26,  76;
    255,   71,   46,   28,  30,  26,  76, 232;
    911,  255,  142,   92,  70,  78,  76, 232, 764;
   3535,  911,  510,  284, 230, 182, 228, 232, 764, 2620;
  13903, 3535, 1822, 1020, 710, 598, 532, 696, 764, 2620, 9496;
  ...
Row r = (3, 1, 2, 4) = (3*1, 1*1, 1*2, 1*4) = termwise products of (3, 1, 1, 1) and (1, 1, 2, 4), where A000085 = (1, 1, 2, 4, 10, 26, 76, ...).
		

Crossrefs

A188144 Binomial transform A140456(n+1) (indecomposable involutions).

Original entry on oeis.org

1, 2, 6, 20, 74, 292, 1218, 5308, 24034, 112484, 542346, 2686268, 13639226, 70863652, 376208706, 2038335580, 11259474754, 63353211332, 362819139978, 2113410084188, 12513610048154, 75274067489284, 459782361574146, 2850369932150908, 17926893505949986, 114337654086861092
Offset: 0

Views

Author

Groux Roland, Mar 22 2011

Keywords

Comments

a(n) is also the INVERTi transform of A005425(n+1) (self-inverse partial permutations) starting at n=2.

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, n+1,  2*b(n-1) + (n-1)*b(n-2)) end:
    g:= proc(n) g(n):= `if`(n<1, -1, -add(g(n-i)*b(i), i=1..n)) end:
    a:= n-> g(n+2):
    seq(a(n), n=0..28);  # Alois P. Heinz, Mar 19 2020
  • Mathematica
    nmax = 18; A140456 = CoefficientList[ Series[1 - 1/Total[ CoefficientList[ Series[Exp[x^2/2 + x], {x, 0, nmax + 2}], x]*Range[0, nmax + 2]!* x^Range[0, nmax + 2]], {x, 0, nmax + 2}], x]; a[n_] := Sum[ Binomial[n, k]*A140456[[k + 3]], {k, 0, n}]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    seq(n)={Vec(1 - 2*x - 1/serlaplace(exp( 2*x + x^2/2 + O(x^3*x^n) )))} \\ Andrew Howroyd, Jan 06 2020

Formula

a(n) is the moment of order n for the probability density function: sqrt(2/Pi^3)*exp((x-2)^2/2)/(1+(erfi((x-2)/sqrt(2)))^2) over the interval -infinity..infinity, with erfi the imaginary error function.
G.f.: A(x) = (1 - 2*x - G(0))/x^2; G(k) = 1 - 2*x - x^2*(k+1)/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 26 2012

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 06 2020

A258306 A(n,k) is the sum over all Motzkin paths of length n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 7, 14, 1, 1, 5, 9, 23, 43, 1, 1, 6, 11, 34, 71, 141, 1, 1, 7, 13, 47, 105, 255, 490, 1, 1, 8, 15, 62, 145, 411, 911, 1785, 1, 1, 9, 17, 79, 191, 615, 1496, 3535, 6789, 1, 1, 10, 19, 98, 243, 873, 2269, 6169, 13903, 26809
Offset: 0

Views

Author

Alois P. Heinz, May 25 2015

Keywords

Examples

			Square array A(n,k) begins:
:   1,   1,   1,   1,   1,    1,    1, ...
:   1,   1,   1,   1,   1,    1,    1, ...
:   2,   3,   4,   5,   6,    7,    8, ...
:   5,   7,   9,  11,  13,   15,   17, ...
:  14,  23,  34,  47,  62,   79,   98, ...
:  43,  71, 105, 145, 191,  243,  301, ...
: 141, 255, 411, 615, 873, 1191, 1575, ...
		

Crossrefs

Columns k=0-1 give: A258312, A140456(n+2).
Main diagonal gives A266386.

Programs

  • Maple
    b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
                      +b(x-1, y, false, k) +b(x-1, y+1, true, k)))
        end:
    A:= (n, k)-> b(n, 0, false, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (x + k*y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]]; A[n_, k_] :=   b[n, 0, False, k]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 23 2017, translated from Maple *)

Formula

A(n,k) = Sum_{i=0..min(floor(n/2),k)} C(k,i) * i! * A258307(n,i).

A258309 A(n,k) is the sum over all Motzkin paths of length n of products over all peaks p of (k*x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 9, 1, 1, 5, 10, 23, 21, 1, 1, 6, 13, 43, 71, 51, 1, 1, 7, 16, 69, 151, 255, 127, 1, 1, 8, 19, 101, 261, 703, 911, 323, 1, 1, 9, 22, 139, 401, 1485, 2983, 3535, 835, 1, 1, 10, 25, 183, 571, 2691, 6973, 14977, 13903, 2188
Offset: 0

Views

Author

Alois P. Heinz, May 25 2015

Keywords

Examples

			Square array A(n,k) begins:
:  1,   1,   1,    1,    1,    1,    1, ...
:  1,   1,   1,    1,    1,    1,    1, ...
:  2,   3,   4,    5,    6,    7,    8, ...
:  4,   7,  10,   13,   16,   19,   22, ...
:  9,  23,  43,   69,  101,  139,  183, ...
: 21,  71, 151,  261,  401,  571,  771, ...
: 51, 255, 703, 1485, 2691, 4411, 6735, ...
		

Crossrefs

Columns k=0-1 give: A001006, A140456(n+2).
Main diagonal gives A261785.

Programs

  • Maple
    b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
                      +b(x-1, y, false, k) +b(x-1, y+1, true, k)))
        end:
    A:= (n, k)-> b(n, 0, false, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]];
    A[n_, k_] := b[n, 0, False, k];
    Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 04 2017, translated from Maple *)

Formula

A(n,k) = Sum_{i=0..min(floor(n/2),k)} C(k,i) * i! * A258310(n,i).

A211371 The number of indecomposable n-permutations that have only cycles of length 3 or less.

Original entry on oeis.org

0, 1, 1, 3, 7, 29, 131, 585, 3083, 17089, 97987, 607977, 3926731, 26344001, 185908739, 1358432937, 10279616891, 80819893393, 655374770131, 5482528852761, 47329769940331, 420061520283617, 3832533793409027, 35926633641149865, 345280194806563931
Offset: 0

Views

Author

Geoffrey Critzer, May 11 2012

Keywords

Examples

			a(4) = 7 because we have: 2431, 3241, 3412, 4132, 4213, 4231, 4321.
		

Crossrefs

Programs

  • Mathematica
    nn = 20; a = x + x^2/2 + x^3/3; b = Total[Range[0, nn]! CoefficientList[Series[Exp[a], {x, 0, nn}], x]* x^Range[0, nn]]; CoefficientList[Series[1 - 1/b, {x, 0, nn}], x]

Formula

G.f.: 1-1/A(x) where A(x) is the o.g.f. for A057693.
Showing 1-5 of 5 results.