A152736
Triangle read by rows: M*Q, where M = an infinite lower triangular matrix with A140456 in every column: (1, 1, 1, 3, 7, 23, 71, ...) and Q = a matrix with A000085 as the main diagonal the rest zeros.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 1, 2, 4, 7, 3, 2, 4, 10, 23, 7, 6, 4, 10, 26, 71, 23, 14, 12, 10, 26, 76, 255, 71, 46, 28, 30, 26, 76, 232, 911, 255, 142, 92, 70, 78, 76, 232, 764, 3535, 911, 510, 284, 230, 182, 228, 232, 764, 2620
Offset: 1
First few rows of the triangle:
1;
1, 1;
1, 1, 2;
3, 1, 2, 4;
7, 3, 2, 4, 10;
23, 7, 6, 4, 10, 26;
71, 23, 14, 12, 10, 26, 76;
255, 71, 46, 28, 30, 26, 76, 232;
911, 255, 142, 92, 70, 78, 76, 232, 764;
3535, 911, 510, 284, 230, 182, 228, 232, 764, 2620;
13903, 3535, 1822, 1020, 710, 598, 532, 696, 764, 2620, 9496;
...
Row r = (3, 1, 2, 4) = (3*1, 1*1, 1*2, 1*4) = termwise products of (3, 1, 1, 1) and (1, 1, 2, 4), where A000085 = (1, 1, 2, 4, 10, 26, 76, ...).
A188144
Binomial transform A140456(n+1) (indecomposable involutions).
Original entry on oeis.org
1, 2, 6, 20, 74, 292, 1218, 5308, 24034, 112484, 542346, 2686268, 13639226, 70863652, 376208706, 2038335580, 11259474754, 63353211332, 362819139978, 2113410084188, 12513610048154, 75274067489284, 459782361574146, 2850369932150908, 17926893505949986, 114337654086861092
Offset: 0
-
b:= proc(n) b(n):= `if`(n<2, n+1, 2*b(n-1) + (n-1)*b(n-2)) end:
g:= proc(n) g(n):= `if`(n<1, -1, -add(g(n-i)*b(i), i=1..n)) end:
a:= n-> g(n+2):
seq(a(n), n=0..28); # Alois P. Heinz, Mar 19 2020
-
nmax = 18; A140456 = CoefficientList[ Series[1 - 1/Total[ CoefficientList[ Series[Exp[x^2/2 + x], {x, 0, nmax + 2}], x]*Range[0, nmax + 2]!* x^Range[0, nmax + 2]], {x, 0, nmax + 2}], x]; a[n_] := Sum[ Binomial[n, k]*A140456[[k + 3]], {k, 0, n}]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 03 2013 *)
-
seq(n)={Vec(1 - 2*x - 1/serlaplace(exp( 2*x + x^2/2 + O(x^3*x^n) )))} \\ Andrew Howroyd, Jan 06 2020
A258306
A(n,k) is the sum over all Motzkin paths of length n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 7, 14, 1, 1, 5, 9, 23, 43, 1, 1, 6, 11, 34, 71, 141, 1, 1, 7, 13, 47, 105, 255, 490, 1, 1, 8, 15, 62, 145, 411, 911, 1785, 1, 1, 9, 17, 79, 191, 615, 1496, 3535, 6789, 1, 1, 10, 19, 98, 243, 873, 2269, 6169, 13903, 26809
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 2, 3, 4, 5, 6, 7, 8, ...
: 5, 7, 9, 11, 13, 15, 17, ...
: 14, 23, 34, 47, 62, 79, 98, ...
: 43, 71, 105, 145, 191, 243, 301, ...
: 141, 255, 411, 615, 873, 1191, 1575, ...
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+b(x-1, y, false, k) +b(x-1, y+1, true, k)))
end:
A:= (n, k)-> b(n, 0, false, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (x + k*y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]]; A[n_, k_] := b[n, 0, False, k]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 23 2017, translated from Maple *)
A258309
A(n,k) is the sum over all Motzkin paths of length n of products over all peaks p of (k*x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 9, 1, 1, 5, 10, 23, 21, 1, 1, 6, 13, 43, 71, 51, 1, 1, 7, 16, 69, 151, 255, 127, 1, 1, 8, 19, 101, 261, 703, 911, 323, 1, 1, 9, 22, 139, 401, 1485, 2983, 3535, 835, 1, 1, 10, 25, 183, 571, 2691, 6973, 14977, 13903, 2188
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 2, 3, 4, 5, 6, 7, 8, ...
: 4, 7, 10, 13, 16, 19, 22, ...
: 9, 23, 43, 69, 101, 139, 183, ...
: 21, 71, 151, 261, 401, 571, 771, ...
: 51, 255, 703, 1485, 2691, 4411, 6735, ...
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
+b(x-1, y, false, k) +b(x-1, y+1, true, k)))
end:
A:= (n, k)-> b(n, 0, false, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]];
A[n_, k_] := b[n, 0, False, k];
Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 04 2017, translated from Maple *)
A211371
The number of indecomposable n-permutations that have only cycles of length 3 or less.
Original entry on oeis.org
0, 1, 1, 3, 7, 29, 131, 585, 3083, 17089, 97987, 607977, 3926731, 26344001, 185908739, 1358432937, 10279616891, 80819893393, 655374770131, 5482528852761, 47329769940331, 420061520283617, 3832533793409027, 35926633641149865, 345280194806563931
Offset: 0
a(4) = 7 because we have: 2431, 3241, 3412, 4132, 4213, 4231, 4321.
-
nn = 20; a = x + x^2/2 + x^3/3; b = Total[Range[0, nn]! CoefficientList[Series[Exp[a], {x, 0, nn}], x]* x^Range[0, nn]]; CoefficientList[Series[1 - 1/b, {x, 0, nn}], x]
Showing 1-5 of 5 results.
Comments