A259068 Decimal expansion of zeta'(-3) (the derivative of Riemann's zeta function at -3).
0, 0, 5, 3, 7, 8, 5, 7, 6, 3, 5, 7, 7, 7, 4, 3, 0, 1, 1, 4, 4, 4, 1, 6, 9, 7, 4, 2, 1, 0, 4, 1, 3, 8, 4, 2, 8, 9, 5, 6, 6, 4, 4, 3, 9, 7, 4, 2, 2, 9, 5, 5, 0, 7, 0, 5, 9, 4, 4, 7, 0, 2, 3, 2, 2, 3, 3, 2, 4, 5, 0, 1, 9, 9, 7, 9, 2, 4, 0, 6, 9, 5, 8, 6, 0, 9, 5, 1, 0, 3, 8, 7, 0, 8, 2, 5, 6, 8, 3, 2, 6, 7, 1, 2, 2, 4, 3
Offset: 0
Examples
0.0053785763577743011444169742104138428956644397422955070594470232233245...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's MathWorld, Riemann Zeta Function.
- Wikipedia, Riemann Zeta Function
- Index entries for constants related to zeta
Crossrefs
Programs
-
Mathematica
Join[{0, 0}, RealDigits[Zeta'[-3], 10, 105] // First]
Formula
zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-3) = -11/720 - log(A(3)), where A(3) is A243263.
Equals -11/720 + (gamma + log(2*Pi))/120 - 3*Zeta'(4)/(4*Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 24 2015