cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A027999 Expansion of Product(1+q^m)^(m(m-1)/2); m=1..inf.

Original entry on oeis.org

1, 0, 1, 3, 6, 13, 24, 49, 91, 181, 334, 632, 1163, 2138, 3880, 7006, 12531, 22279, 39369, 69078, 120597, 209282, 361405, 620829, 1061687, 1807014, 3062642, 5168784, 8688820, 14549659, 24274226, 40353748, 66854518, 110391391, 181695436, 298129605, 487706902
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(binomial(i, 2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[Binomial[i, 2], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)

Formula

a(n) ~ 7^(1/8) / (2^(47/24) * 15^(1/8) * n^(5/8)) * exp(-2025 * Zeta(3)^3 / (98*Pi^8) - 135*(15/7)^(1/4) * Zeta(3)^2 / (28*Pi^5) * n^(1/4) - 3*sqrt(15/7) * Zeta(3) / (2*Pi^2) * sqrt(n) + 2*(7/15)^(1/4) * Pi/3 * n^(3/4)), where Zeta(3) = A002117. - Vaclav Kotesovec, May 27 2015

A258352 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)/6).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 21, 39, 76, 145, 294, 581, 1169, 2276, 4435, 8494, 16237, 30768, 58221, 109466, 205223, 382658, 710808, 1314091, 2420437, 4439753, 8115645, 14781062, 26833241, 48550863, 87575527, 157480827, 282362462, 504819198, 900058558, 1600424247
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: binomial(n, 3))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

a(n) ~ Zeta(5)^(379/3600) / (2^(521/1800) * sqrt(5*Pi) * n^(2179/3600)) * exp(Zeta'(-1)/3 + Zeta(3)/(8*Pi^2) - Pi^16 / (3110400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (216000 * Zeta(5)^2) - Zeta(3)^2/(90*Zeta(5)) + Zeta'(-3)/6 + (-Pi^12 / (10800000 * 2^(2/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (36000 * 2^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (3 * 2^(4/5) * Zeta(5)^(2/5))) * n^(2/5) - Pi^4 / (180 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5 * Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.

A258347 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k+1)).

Original entry on oeis.org

1, 2, 9, 28, 88, 250, 708, 1894, 4988, 12718, 31839, 77952, 187771, 444526, 1037522, 2387670, 5426996, 12188774, 27079379, 59541078, 129663636, 279801102, 598620511, 1270300142, 2674874760, 5591124784, 11605082733, 23926811840, 49016020317, 99798382290
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Pi^(1/12) / (2^(3/2) * 15^(7/48) * n^(31/48)) * exp(Zeta'(-1) - Zeta(3) / (4*Pi^2) + 75*Zeta(3)^3 / Pi^8 - 15^(5/4) * Zeta(3)^2 / (2*Pi^5) * n^(1/4) + sqrt(15) * Zeta(3) / Pi^2 * sqrt(n) + 4*Pi / (3*15^(1/4)) * n^(3/4)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962).
G.f.: exp(Sum_{k>=1} (sigma_2(k) + sigma_3(k))*x^k/k). - Ilya Gutkovskiy, Aug 22 2018

A258348 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)).

Original entry on oeis.org

1, 0, 2, 6, 15, 32, 79, 172, 397, 860, 1879, 3986, 8462, 17586, 36408, 74366, 150875, 303006, 604511, 1195872, 2350614, 4587484, 8898857, 17154278, 32883109, 62679852, 118858190, 224238730, 421021209, 786793776, 1463796383, 2711552690, 5002097398, 9190449808
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)),{k,1,nmax}],{x,0,nmax}],x]
    Clear[a]; a[n_]:= a[n] = 1/n*Sum[(DivisorSigma[3, k]-DivisorSigma[2, k])*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Vaclav Kotesovec, Apr 11 2016, following a suggestion of George Beck *)

Formula

a(n) ~ 1 / (2^(3/2) * 15^(5/48) * Pi^(1/12) * n^(29/48)) * exp(-Zeta'(-1) - Zeta(3)/(4*Pi^2) - 75*Zeta(3)^3 / Pi^8 - 15^(5/4) * Zeta(3)^2 / (2*Pi^5) * n^(1/4) - sqrt(15) * Zeta(3) / Pi^2 * sqrt(n) + 4*Pi / (3*15^(1/4)) * n^(3/4)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962).
G.f.: exp(Sum_{k>=1} (sigma_3(k) - sigma_2(k))*x^k/k). - Ilya Gutkovskiy, Aug 22 2018

A258350 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k+1)*(k+2)).

Original entry on oeis.org

1, 6, 45, 260, 1410, 7026, 33212, 149190, 643959, 2681020, 10820736, 42468828, 162566956, 608302638, 2229485529, 8016901068, 28324233846, 98447346282, 336996263702, 1137220855428, 3786525025002, 12449461237388, 40446207528429, 129926295916884, 412912082761651
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(79/600) / (2^(21/200) * sqrt(5*Pi) * n^(379/600)) * exp(2*Zeta'(-1) - 3*Zeta(3)/(4*Pi^2) - Pi^16 / (518400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3) + (Pi^12 / (1800000 * 2^(3/5) * 3^(1/5) * Zeta(5)^(11/5)) - Pi^4 * Zeta(3) / (150 * 2^(3/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(1/5) * 3^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(1/5) * (3*Zeta(5))^(2/5))) * n^(2/5) + Pi^4 / (30 * 2^(4/5) * (3*Zeta(5))^(3/5)) * n^(3/5) + 5 * (3*Zeta(5))^(1/5) / 2^(7/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.

A258351 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 141, 354, 996, 2720, 7194, 18306, 46154, 115506, 288195, 713210, 1749732, 4253148, 10259302, 24573390, 58491312, 138371354, 325415727, 760899396, 1769420183, 4093054602, 9420739965, 21578842582, 49199229066, 111672215658, 252381169048
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(79/600) / (2^(21/200) * sqrt(5*Pi) * n^(379/600)) * exp(2*Zeta'(-1) + 3*Zeta(3)/(4*Pi^2) - Pi^16 / (518400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3) + (-Pi^12 / (1800000 * 2^(3/5) * 3^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (150 * 2^(3/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(1/5) * 3^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(1/5) * (3*Zeta(5))^(2/5))) * n^(2/5) - Pi^4 / (30 * 2^(4/5) * (3*Zeta(5))^(3/5)) * n^(3/5) + 5 * (3*Zeta(5))^(1/5) / 2^(7/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.

A264923 G.f.: 1 / Product_{n>=0} (1 - x^(n+3))^((n+1)*(n+2)/2!).

Original entry on oeis.org

1, 0, 0, 1, 3, 6, 11, 18, 33, 57, 105, 183, 330, 567, 990, 1693, 2904, 4917, 8343, 14010, 23511, 39171, 65100, 107592, 177352, 290931, 475905, 775381, 1259637, 2039094, 3291613, 5296467, 8499339, 13599292, 21702795, 34541724, 54839894, 86847255, 137212197, 216274466, 340129773, 533726442, 835732774, 1305877914, 2036369010
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2015

Keywords

Comments

Number of partitions of n objects of 3 colors, where each part must contain at least one of each color. [Conjecture - see comment by Franklin T. Adams-Watters in A052847].

Examples

			G.f.: A(x) = 1 + x^3 + 3*x^4 + 6*x^5 + 11*x^6 + 18*x^7 + 33*x^8 + 57*x^9 + 105*x^10 +...
where
1/A(x) = (1-x^3) * (1-x^4)^3 * (1-x^5)^6 * (1-x^6)^10 * (1-x^7)^15 * (1-x^8)^21 * (1-x^9)^28 * (1-x^10)^36 * (1-x^11)^45 *...
Also,
log(A(x)) = (x/(1-x))^3 + (x^2/(1-x^2))^3/2 + (x^3/(1-x^3))^3/3 + (x^4/(1-x^4))^3/4 + (x^5/(1-x^5))^3/5 + (x^6/(1-x^6))^3/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-2)*(k-1)/2), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
  • PARI
    {a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+3) +x*O(x^n) )^((k+1)*(k+2)/2) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^3 /k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {L(n) = sumdiv(n,d, d*(d-1)*(d-2)/2! )}
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} ( x^n/(1-x^n) )^3 /n ).
G.f.: exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{d|n} d*(d-1)*(d-2)/2!.
a(n) ~ Pi^(3/8) / (2^(55/32) * 15^(7/32) * n^(23/32)) * exp(29*Zeta(3)/(8*Pi^2) - log(2*Pi)/2 - 3*Zeta'(-1)/2 - 2025*Zeta(3)^3/(2*Pi^8) + (5^(1/4)*Pi/6^(3/4) - 135*15^(1/4)*Zeta(3)^2/(2^(7/4)*Pi^5)) * n^(1/4) - 3*sqrt(15*n/2)*Zeta(3)/Pi^2 + 2^(7/4)*Pi/(3*15^(1/4)) * n^(3/4)). - Vaclav Kotesovec, Dec 09 2015

A294780 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k-1)/2).

Original entry on oeis.org

1, 0, 2, 6, 14, 32, 74, 166, 370, 810, 1736, 3682, 7718, 15976, 32754, 66508, 133794, 266948, 528424, 1038178, 2025456, 3925360, 7559298, 14470162, 27540598, 52130440, 98159832, 183905636, 342896254, 636384748, 1175823512, 2163221030, 3963353706, 7232529308
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Comments

Convolution of A027999 and A258349.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi * n^(3/4) / 3 - 7*Zeta(3) * sqrt(n) / (2*Pi^2) - 49*Zeta(3)^2 * n^(1/4) / (4*Pi^5) - 22411 * Zeta(3)^3 / (392*Pi^8) - Zeta(3) / (8*Pi^2) - 1/24) * sqrt(A) / (2^(23/12) * Pi^(1/24) * n^(59/96)), where A is the Glaisher-Kinkelin constant A074962.

A294778 Expansion of Product_{k>=1} 1/(1 - x^(2*k-1))^(k*(k-1)/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 3, 1, 6, 3, 11, 12, 18, 29, 33, 69, 67, 138, 141, 275, 306, 516, 656, 972, 1353, 1828, 2712, 3477, 5280, 6654, 10038, 12756, 18789, 24369, 34796, 46167, 63990, 86629, 117189, 160698, 213984, 295092, 389517, 536683, 706590, 968289, 1276310
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - 5^(1/4) * Pi * n^(1/4) / (16*3^(3/4)) + 3*Zeta(3) / (32*Pi^2)) / (2^(31/16) * 15^(1/8) * n^(5/8)).
Showing 1-9 of 9 results.