A258440 Number of squares of all sizes in 3*n*(n+1)/2-ominoes in form of three-quarters of Aztec diamonds.
3, 11, 25, 49, 84, 132, 196, 278, 379, 503, 651, 825, 1028, 1262, 1528, 1830, 2169, 2547, 2967, 3431, 3940, 4498, 5106, 5766, 6481, 7253, 8083, 8975, 9930, 10950, 12038, 13196, 14425, 15729, 17109, 18567, 20106, 21728, 23434, 25228, 27111, 29085, 31153, 33317, 35578, 37940, 40404, 42972, 45647, 48431
Offset: 1
Examples
a(1)=3, a(2)=9+2=11, a(3)=18+7=25, a(4)=30+15+4=49, a(5)=45+26+11+2=84.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Luce ETIENNE, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,-1,0,2,-1).
Programs
-
Magma
[(52*n^3+186*n^2+212*n-3*(32*Floor(n/3)+3*(1-(-1)^n)))/144: n in [1..50]]; // Vincenzo Librandi, Jun 02 2015
-
Maple
A258440:=n->(52*n^3+186*n^2+212*n-3*(32*floor(n/3)+3*(1-(-1)^n)))/144: seq(A258440(n), n=1..100); # Wesley Ivan Hurt, Jul 10 2015
-
Mathematica
Table[(52 n^3 + 186 n^2 + 212 n - 3 (32 Floor[n/3] + 3 (1 - (-1)^n)))/144, {n, 45}] (* Vincenzo Librandi, Jun 02 2015 *)
-
PARI
Vec(x*(2*x^3+3*x^2+5*x+3)/((x-1)^4*(x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Jun 01 2015
Formula
a(n) = (1/8)*(Sum_{i=0..(n-1-floor(n/3)}(4*n+1-6*i-(-1)^i)*(4*n+3-6*i+(-1)^i)- Sum_{j=0..(2*n-1+(-1)^n)}(2*n+1+(-1)^n-4*j)*(2*n+1-(-1)^n-4*j)).
a(n) = (52*n^3+186*n^2+212*n-3*(32*floor(n/3)+3*(1-(-1)^n)))/144.
a(n) = 2*a(n-1)-a(n-3)-a(n-4)+2*a(n-6)-a(n-7) for n>7. - Colin Barker, Jun 01 2015
G.f.: x*(2*x^3+3*x^2+5*x+3) / ((x-1)^4*(x+1)*(x^2+x+1)). - Colin Barker, Jun 01 2015
Extensions
Typo in data fixed by Colin Barker, Jun 01 2015
Name edited by Michel Marcus, Dec 22 2020
Comments