cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256193 Number T(n,k) of partitions of n into two sorts of parts having exactly k parts of the second sort; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 5, 12, 11, 5, 1, 7, 20, 24, 16, 6, 1, 11, 35, 49, 41, 22, 7, 1, 15, 54, 89, 91, 63, 29, 8, 1, 22, 86, 158, 186, 155, 92, 37, 9, 1, 30, 128, 262, 351, 342, 247, 129, 46, 10, 1, 42, 192, 428, 635, 700, 590, 376, 175, 56, 11, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 19 2015

Keywords

Examples

			T(3,0) = 3: 111, 21, 3.
T(3,1) = 6: 1'11, 11'1, 111', 2'1, 21', 3'.
T(3,2) = 4: 1'1'1, 1'11', 11'1', 2'1'.
T(3,3) = 1: 1'1'1'.
Triangle T(n,k) begins:
   1;
   1,   1;
   2,   3,   1;
   3,   6,   4,   1;
   5,  12,  11,   5,   1;
   7,  20,  24,  16,   6,   1;
  11,  35,  49,  41,  22,   7,   1;
  15,  54,  89,  91,  63,  29,   8,   1;
  22,  86, 158, 186, 155,  92,  37,   9,  1;
  30, 128, 262, 351, 342, 247, 129,  46, 10,  1;
  42, 192, 428, 635, 700, 590, 376, 175, 56, 11,  1;
  ...
		

Crossrefs

T(2n,n) gives A258471.
Row sums give A070933.
Cf. A278464.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
           binomial(j, t), t=0..j), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]* Sum[x^t*Binomial[j, t], {t, 0, j}], {j, 0, n/i}]]]]; T[n_] := Function[ p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
    Table[SeriesCoefficient[FunctionExpand[1/QPochhammer[q + x, q, n]], {q, 0, n - k}, {x, 0, k}], {n, 0, 10}, {k, 0, n}] // Column (* Vladimir Reshetnikov, Nov 22 2016 *)

Formula

Sum_{k=0..n} k * T(n,k) = A278464(n). - Alois P. Heinz, Nov 22 2016

A322211 a(n) = coefficient of x^n*y^n in Product_{n>=1} 1/(1 - (x^n + y^n)).

Original entry on oeis.org

1, 2, 10, 38, 158, 602, 2382, 9142, 35492, 136936, 530404, 2053848, 7972272, 30977742, 120576112, 469915012, 1833813534, 7164469910, 28021000340, 109699469798, 429850240742, 1685728936622, 6615913739206, 25983523253950, 102115250446680, 401557335718522, 1579978592844064, 6219928993470190, 24498287876663618, 96535916978924934, 380568644820360668
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2018

Keywords

Comments

Number of subsets of partitions of 2n that have sum n. Olivier Gérard, May 07 2020

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 38*x^3 + 158*x^4 + 602*x^5 + 2382*x^6 + 9142*x^7 + 35492*x^8 + 136936*x^9 + 530404*x^10 + 2053848*x^11 + 7972272*x^12 + ...
RELATED SERIES.
The product P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)) begins
P(x,y) = 1 + (x + y) + (2*x^2 + 2*x*y + 2*y^2) + (3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3) + (5*x^4 + 7*x^3*y + 10*x^2*y^2 + 7*x*y^3 + 5*y^4) + (7*x^5 + 12*x^4*y + 18*x^3*y^2 + 18*x^2*y^3 + 12*x*y^4 + 7*y^5) + (11*x^6 + 19*x^5*y + 34*x^4*y^2 + 38*x^3*y^3 + 34*x^2*y^4 + 19*x*y^5 + 11*y^6) + (15*x^7 + 30*x^6*y + 56*x^5*y^2 + 74*x^4*y^3 + 74*x^3*y^4 + 56*x^2*y^5 + 30*x*y^6 + 15*y^7) + (22*x^8 + 45*x^7*y + 94*x^6*y^2 + 133*x^5*y^3 + 158*x^4*y^4 + 133*x^3*y^5 + 94*x^2*y^6 + 45*x*y^7 + 22*y^8) + ...
in which this sequence equals the coefficients of x^n*y^n for n >= 0.
The logarithm of the g.f. begins
log( A(x) ) = 2*x + 16*x^2/2 + 62*x^3/3 + 272*x^4/4 + 922*x^5/5 + 3640*x^6/6 + 12966*x^7/7 + 49872*x^8/8 + 190340*x^9/9 + 745316*x^10/10 + 2928136*x^11/11 + 11602184*x^12/12 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; s = Series[Product[1/(1 - (x^k + y^k)), {k, 1, nmax}], {x, 0, nmax}, {y, 0, nmax}]; Flatten[{1, Table[Coefficient[s, x^n*y^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Dec 04 2018 *)
  • PARI
    {P = 1/prod(n=1,61, (1 - (x^n + y^n) +O(x^61) +O(y^61)) );}
    {a(n) = polcoeff( polcoeff( P,n,x),n,y)}
    for(n=0,35, print1( a(n),", ") )

Formula

Main diagonal of square table A322210.
a(n) ~ c * 4^n / sqrt(Pi*n), where c = 1 / A048651 = 1 / Product_{k>=1} (1 - 1/2^k) = 3.46274661945506361153795734292443116454075790290443839... - Vaclav Kotesovec, Dec 23 2018
Showing 1-2 of 2 results.