cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A322210 G.f.: P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)), where P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k, as a square table of coefficients T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 10, 7, 5, 7, 12, 18, 18, 12, 7, 11, 19, 34, 38, 34, 19, 11, 15, 30, 56, 74, 74, 56, 30, 15, 22, 45, 94, 133, 158, 133, 94, 45, 22, 30, 67, 146, 233, 297, 297, 233, 146, 67, 30, 42, 97, 228, 385, 550, 602, 550, 385, 228, 97, 42, 56, 139, 340, 623, 951, 1166, 1166, 951, 623, 340, 139, 56
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2018

Keywords

Comments

Conjecture 1: the triangular table T(n,k) is the number of ways to form the subsum k from the partitions of n, where n and k are integers such that 0 <= k <= n. For example, t(4,2)=10; the five partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1) with subsum 2 occurring {0,0,2,2,6) times for a total of 10. - George Beck, Jan 03 2020
From Wouter Meeussen, Mar 09 2023: (Start)
Conjecture 2: the square table T(n,k) is the coefficient of s_lambda in the sum over all partitions lambda |-n and nu |-k of (s_rho/mu) where s_lambda*s_mu = Sum(rho|-n+k; C(rho, lambda, mu) s_rho). Simply stated as: multiply lambda with mu, and, for each term in the result, take the skew Schur function with mu and count how often you get the original lambda back. Sum up over all lambda and mu of the size n and k.
Conjecture 3: the triangular table T(n,k) is analogous to conjecture 2, but counting s_lambda in s_(lambda/mu) * s_mu with lambda |- n and mu |- k and 0<=k<=n. (End)

Examples

			G.f.: P(x,y) = 1 + (x + y) + (2*x^2 + 2*x*y + 2*y^2) + (3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3) + (5*x^4 + 7*x^3*y + 10*x^2*y^2 + 7*x*y^3 + 5*y^4) + (7*x^5 + 12*x^4*y + 18*x^3*y^2 + 18*x^2*y^3 + 12*x*y^4 + 7*y^5) + (11*x^6 +19*x^5*y + 34*x^4*y^2 + 38*x^3*y^3 + 34*x^2*y^4 + 19*x*y^5 + 11*y^6) + (15*x^7 + 30*x^6*y + 56*x^5*y^2 + 74*x^4*y^3 + 74*x^3*y^4 + 56*x^2*y^5 + 30*x*y^6 + 15*y^7) + (22*x^8 + 45*x^7*y + 94*x^6*y^2 + 133*x^5*y^3 + 158*x^4*y^4 + 133*x^3*y^5 + 94*x^2*y^6 + 45*x*y^7 + 22*y^8) + ...
such that
P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)),
where
P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k.
SQUARE TABLE.
The square table of coefficients T(n,k) of x^n*y^k in P(x,y) begins
   1,   1,   2,    3,    5,     7,    11,     15,     22,     30, ...
   1,   2,   4,    7,   12,    19,    30,     45,     67,     97, ...
   2,   4,  10,   18,   34,    56,    94,    146,    228,    340, ...
   3,   7,  18,   38,   74,   133,   233,    385,    623,    977, ...
   5,  12,  34,   74,  158,   297,   550,    951,   1614,   2627, ...
   7,  19,  56,  133,  297,   602,  1166,   2133,   3775,   6437, ...
  11,  30,  94,  233,  550,  1166,  2382,   4551,   8424,  14953, ...
  15,  45, 146,  385,  951,  2133,  4551,   9142,  17639,  32680, ...
  22,  67, 228,  623, 1614,  3775,  8424,  17639,  35492,  68356, ...
  30,  97, 340,  977, 2627,  6437, 14953,  32680,  68356, 136936, ...
  42, 139, 506, 1501, 4202, 10692, 25835,  58659, 127443, 264747, ...
  56, 195, 730, 2255, 6531, 17290, 43313, 102149, 229998, 495195, ...
  ...
TRIANGLE.
Alternatively, this sequence may be written as a triangle, starting as
   1;
   1,   1;
   2,   2,   2;
   3,   4,   4,   3;
   5,   7,  10,   7,    5;
   7,  12,  18,  18,   12,    7;
  11,  19,  34,  38,   34,   19,   11;
  15,  30,  56,  74,   74,   56,   30,   15;
  22,  45,  94, 133,  158,  133,   94,   45,   22;
  30,  67, 146, 233,  297,  297,  233,  146,   67,  30;
  42,  97, 228, 385,  550,  602,  550,  385,  228,  97,  42;
  56, 139, 340, 623,  951, 1166, 1166,  951,  623, 340, 139,  56;
  77, 195, 506, 977, 1614, 2133, 2382, 2133, 1614, 977, 506, 195, 77;
  ...
		

Crossrefs

Cf. A322200 (log).
Cf. A000041 (row 0 = partitions), A000070 (row 1), A093695(k+2) (row 2).
Main diagonal gives A322211.
Antidiagonal sums give A070933.
Cf. A284593.
Cf. A361286.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1,
          (x+1)^n, b(n, i-1) +(x^i+1)*b(n-i, min(n-i, i))))
        end:
    T:= (n, k)-> coeff(b(n+k$2), x, k):
    seq(seq(T(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (x + 1)^n, b[n, i - 1] + (x^i + 1) b[n - i, Min[n - i, i]]]];
    T[n_, k_] := Coefficient[b[n + k, n + k], x, k];
    Table[Table[T[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
  • PARI
    {P = 1/prod(n=1,61, (1 - (x^n + y^n) +O(x^61) +O(y^61)) );}
    {T(n,k) = polcoeff( polcoeff( P,n,x),k,y)}
    for(n=0,16, for(k=0,16, print1( T(n,k),", ") );print(""))

Formula

FORMULAS FOR TERMS.
T(n,k) = T(k,n) for n >= 0, k >= 0.
T(n,0) = A000041(n) for n >= 0, where A000041 is the partition numbers.
T(n,1) = A000070(n) for n >= 0, where A000070 is the sum of partitions.
ROW GENERATING FUNCTIONS.
Row 0: 1/( Product_{n>=1} (1 - x^n) ).
Row 1: 1/( (1-x) * Product_{n>=1} (1 - x^n) ).
Row 2: 2/( (1-x) * (1-x^2) * Product_{n>=1} (1 - x^n) ).

A322213 a(n) = coefficient of x^n*y^n in Product_{n>=1} (1 - (x^n + y^n)).

Original entry on oeis.org

1, 0, 0, -2, -2, -2, 0, 2, 2, 4, -2, 2, 0, 4, -2, 4, 6, 4, 4, -2, -10, -12, -12, -16, -14, 6, 6, -4, 16, 22, 30, 12, 18, -60, -18, -34, -64, -56, -36, -46, 16, 46, 64, 70, 110, 192, 152, 124, 58, 78, -26, -54, -366, -278, -182, -282, -190, 40, -112, 234, 300, 476, 488, 906, 732, 616, 706, 154, 228, -180, -864, -1112, -1744, -2294, -2824, -3154, -2170, -2146, -2524, -1102, -476, -126, 1986, 4338, 3344, 3608, 6316, 5136, 6638, 6726, 5254, 3982, 2916, -1466, -86, -6710, -6502, -9900, -9128, -14170, -12232, -13940, -9192, -6892, -6270, 3762, 7058, 9468, 23860, 22556, 29812, 40150, 34952, 30350
Offset: 0

Views

Author

Paul D. Hanna, Dec 03 2018

Keywords

Examples

			G.f.: A(x) = 1 - 2*x^3 - 2*x^4 - 2*x^5 + 2*x^7 + 2*x^8 + 4*x^9 - 2*x^10 + 2*x^11 + 4*x^13 - 2*x^14 + 4*x^15 + 6*x^16 + 4*x^17 + 4*x^18 - 2*x^19 - 10*x^20 + ...
RELATED SERIES.
The product P(x,y) = Product_{n>=1} (1 - (x^n + y^n)) begins
P(x,y) = 1 + (-1*x - 1*y) + (-1*x^2 + 0*x*y - 1*y^2) + (0*x^3 + 1*x^2*y + 1*x*y^2 + 0*y^3) + (0*x^4 + 1*x^3*y + 0*x^2*y^2 + 1*x*y^3 + 0*y^4) + (1*x^5 + 1*x^4*y + 1*x^3*y^2 + 1*x^2*y^3 + 1*x*y^4 + 1*y^5) + (0*x^6 + 0*x^5*y + 0*x^4*y^2 - 2*x^3*y^3 + 0*x^2*y^4 + 0*x*y^5 + 0*y^6) + (1*x^7 + 0*x^6*y + 0*x^5*y^2 + 0*x^4*y^3 + 0*x^3*y^4 + 0*x^2*y^5 + 0*x*y^6 + 1*y^7) + (0*x^8 - 1*x^7*y + 0*x^6*y^2 - 1*x^5*y^3 - 2*x^4*y^4 - 1*x^3*y^5 + 0*x^2*y^6 - 1*x*y^7 + 0*y^8) + (0*x^9 - 1*x^8*y - 1*x^7*y^2 - 2*x^6*y^3 - 1*x^5*y^4 - 1*x^4*y^5 - 2*x^3*y^6 - 1*x^2*y^7 - 1*x*y^8 + 0*y^9) + (0*x^10 - 1*x^9*y + 0*x^8*y^2 + 0*x^7*y^3 + 1*x^6*y^4 - 2*x^5*y^5 + 1*x^4*y^6 + 0*x^3*y^7 + 0*x^2*y^8 - 1*x*y^9 + 0*y^10) + (0*x^11 - 1*x^10*y - 1*x^9*y^2 + 0*x^8*y^3 - 1*x^7*y^4 + 0*x^6*y^5 + 0*x^5*y^6 - 1*x^4*y^7 + 0*x^3*y^8 - 1*x^2*y^9 - 1*x*y^10 + 0*y^11) + (-1*x^12 - 1*x^11*y + 0*x^10*y^2 + 0*x^9*y^3 - 1*x^8*y^4 + 0*x^7*y^5 + 0*x^6*y^6 + 0*x^5*y^7 - 1*x^4*y^8 + 0*x^3*y^9 + 0*x^2*y^10 - 1*x*y^11 - 1*y^12) + ...
in which this sequence equals the coefficients of x^n*y^n for n >= 0.
		

Crossrefs

Cf. A322211.

Programs

  • PARI
    {P = prod(n=1, 121, (1 - (x^n + y^n) +O(x^121) +O(y^121)) ); }
    {a(n) = polcoeff( polcoeff( P, n, x), n, y)}
    for(n=0, 120, print1( a(n), ", ") )

A292613 a(n) = [x^n] 1/(1-x)^n * Product_{k=1..n} 1/(1-x^k).

Original entry on oeis.org

1, 2, 7, 25, 92, 343, 1292, 4902, 18703, 71677, 275694, 1063636, 4114131, 15948762, 61946290, 241013869, 939125870, 3664299332, 14314777054, 55982787136, 219158088711, 858728875776, 3367576480747, 13216392846128, 51905939548950, 203989227456894, 802164259099114
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 20 2017

Keywords

Comments

Number of ways to pick n units in all partitions of 2n - Olivier Gérard, May 07 2020

Examples

			Illustration of comment for n=3, a(3)=25 :
Among the 11 integer partitions of 6, 3 have at least 3 ones.
3,1,1,1  ;  2,1,1,1,1;  1,1,1,1,1,1;
There are respectively 1, 4 and 20 ways to pick 3 of these.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^n*Product[1/(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]

Formula

a(n) ~ c * 4^n / sqrt(Pi*n), where c = 1/(2*QPochhammer[1/2, 1/2]) = 1.7313733097275318057689... - Vaclav Kotesovec, Sep 20 2017
a(n) = A292508(n,n+1). - Alois P. Heinz, Jul 16 2021

A322214 a(n) = coefficient of x^n*y^n in Product_{n>=1} (1 - (x^n + y^n))^3.

Original entry on oeis.org

1, 6, -12, -6, 6, -12, -12, 96, 24, -134, -192, 114, 736, 282, -792, -1532, -270, 1932, 2004, -96, -3654, -6910, -5532, 4836, 21500, 23454, 11850, -8216, -43998, -57744, -34424, 16716, 73506, 105500, 87432, -24474, -230028, -331626, -257616, -163250, 316434, 852450, 1130284, 1175748, 361110, -652820, -1956330, -2964180, -2922288, -1965174, 187806, 3863602, 6585672, 6996900, 6199180, 366768, -7228866, -14682152, -21063366, -19602108, -10562926, 6959976, 30061386, 50110338, 66753126, 68131632, 37666392
Offset: 0

Views

Author

Paul D. Hanna, Dec 04 2018

Keywords

Comments

Compare: Product_{n>=1} (1-x^n)^3 = Sum_{n>=0} (-1)^n * (2*n+1) * x^(n*(n+1)/2).

Examples

			G.f.: A(x) = 1 + 6*x - 12*x^2 - 6*x^3 + 6*x^4 - 12*x^5 - 12*x^6 + 96*x^7 + 24*x^8 - 134*x^9 - 192*x^10 + 114*x^11 + 736*x^12 + 282*x^13 - 792*x^14 - 1532*x^15 - 270*x^16 + 1932*x^17 + 2004*x^18 + ...
RELATED SERIES.
The product P(x,y) = Product_{n>=1} (1 - (x^n + y^n))^3 begins
P(x,y) = 1 + (-3*x - 3*y) + (0*x^2 + 6*x*y + 0*y^2) + (5*x^3 + 6*x^2*y + 6*x*y^2 + 5*y^3) + (0*x^4 - 9*x^3*y - 12*x^2*y^2 - 9*x*y^3 + 0*y^4) + (0*x^5 - 9*x^4*y - 6*x^3*y^2 - 6*x^2*y^3 - 9*x*y^4 + 0*y^5) + (-7*x^6 - 9*x^5*y + 6*x^4*y^2 - 6*x^3*y^3 + 6*x^2*y^4 - 9*x*y^5 - 7*y^6) + (0*x^7 + 12*x^6*y + 12*x^5*y^2 + 27*x^4*y^3 + 27*x^3*y^4 + 12*x^2*y^5 + 12*x*y^6 + 0*y^7) + (0*x^8 + 12*x^7*y + 24*x^6*y^2 + 30*x^5*y^3 + 6*x^4*y^4 + 30*x^3*y^5 + 24*x^2*y^6 + 12*x*y^7 + 0*y^8) + (0*x^9 + 12*x^8*y - 12*x^7*y^2 - 23*x^6*y^3 - 24*x^5*y^4 - 24*x^4*y^5 - 23*x^3*y^6 - 12*x^2*y^7 + 12*x*y^8 + 0*y^9) + (9*x^10 + 12*x^9*y + 0*x^8*y^2 + 3*x^7*y^3 - 15*x^6*y^4 - 12*x^5*y^5 - 15*x^4*y^6 + 3*x^3*y^7 + 0*x^2*y^8 + 12*x*y^9 + 9*x^0*y^10) + (0*x^11 - 15*x^10*y - 36*x^9*y^2 - 54*x^8*y^3 - 60*x^7*y^4 - 60*x^6*y^5 - 60*x^5*y^6 - 60*x^4*y^7 - 54*x^3*y^8 - 36*x^2*y^9 - 15*x*y^10 + 0*y^11) + (0*x^12 - 15*x^11*y - 24*x^10*y^2 - 23*x^9*y^3 - 30*x^8*y^4 - 9*x^7*y^5 - 12*x^6*y^6 - 9*x^5*y^7 - 30*x^4*y^8 - 23*x^3*y^9 - 24*x^2*y^10 - 15*x*y^11 + 0*y^12) + (0*x^13 - 15*x^12*y - 6*x^11*y^2 - 12*x^10*y^3 + 51*x^9*y^4 + 57*x^8*y^5 + 54*x^7*y^6 + 54*x^6*y^7 + 57*x^5*y^8 + 51*x^4*y^9 - 12*x^3*y^10 - 6*x^2*y^11 - 15*x*y^12 + 0*y^13) + (0*x^14 - 15*x^13*y + 6*x^12*y^2 + 24*x^11*y^3 + 66*x^10*y^4 + 33*x^9*y^5 + 69*x^8*y^6 + 96*x^7*y^7 + 69*x^6*y^8 + 33*x^5*y^9 + 66*x^4*y^10 + 24*x^3*y^11 + 6*x^2*y^12 - 15*x*y^13 + 0*y^14) + (-11*x^15 - 15*x^14*y + 24*x^13*y^2 + 49*x^12*y^3 + 87*x^11*y^4 + 69*x^10*y^5 + 127*x^9*y^6 + 93*x^8*y^7 + 93*x^7*y^8 + 127*x^6*y^9 + 69*x^5*y^10 + 87*x^4*y^11 + 49*x^3*y^12 + 24*x^2*y^13 - 15*x*y^14 - 11*y^15) + ...
in which this sequence equals the coefficients of x^n*y^n for n >= 0.
		

Crossrefs

Programs

  • PARI
    {P = prod(n=1, 121, (1 - (x^n + y^n) +O(x^121) +O(y^121))^3 ); }
    {a(n) = polcoeff( polcoeff( P, n, x), n, y)}
    for(n=0, 120, print1( a(n), ", ") )

A322198 a(n) is the coefficient of x^n*y^n in Product_{n>=1} 1/(1 - x^(2*n-1) - y^(2*n-1)).

Original entry on oeis.org

1, 2, 6, 24, 84, 312, 1174, 4420, 16772, 64014, 245212, 942668, 3634914, 14051530, 54440336, 211331906, 821779372, 3200447054, 12481364146, 48736064248, 190513382908, 745492958862, 2919891150694, 11446207136530, 44905452622268, 176300343498632, 692629144937724, 2722834581642342, 10710164125130394, 42151077430686344, 165975440541202824, 653864689092828458
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2018

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 84*x^4 + 312*x^5 + 1174*x^6 + 4420*x^7 + 16772*x^8 + 64014*x^9 + 245212*x^10 + 942668*x^11 + 3634914*x^12 + ...
RELATED SERIES.
The product P(x,y) = Product_{n>=1} 1/(1 - x^(2*n-1) - y^(2*n-1)) = 1/( (1 - x - y) * (1 - x^3 - y^3) * (1 - x^5 - y^5) * (1 - x^7 - y^7) * (1 - x^9 - y^9) * ...)
may be expressed as the series expansion
P(x,y) = 1 + (1*x + 1*y) + (1*x^2 + 2*x*y + 1*y^2) + (2*x^3 + 3*x^2*y + 3*x*y^2 + 2*y^3) + (2*x^4 + 5*x^3*y + 6*x^2*y^2 + 5*x*y^3 + 2*y^4) + (3*x^5 + 7*x^4*y + 11*x^3*y^2 + 11*x^2*y^3 + 7*x*y^4 + 3*y^5) + (4*x^6 + 10*x^5*y + 18*x^4*y^2 + 24*x^3*y^3 + 18*x^2*y^4 + 10*x*y^5 + 4*y^6) + (5*x^7 + 14*x^6*y + 28*x^5*y^2 + 42*x^4*y^3 + 42*x^3*y^4 + 28*x^2*y^5 + 14*x*y^6 + 5*y^7) + (6*x^8 + 19*x^7*y + 42*x^6*y^2 + 71*x^5*y^3 + 84*x^4*y^4 + 71*x^3*y^5 + 42*x^2*y^6 + 19*x*y^7 + 6*y^8) + ...
in which this sequence equals the coefficients of x^n*y^n for n >= 0.
		

Crossrefs

Programs

  • PARI
    N=35;
    {P = 1/prod(n=1, N+1, (1 - x^(2*n-1) - y^(2*n-1) +x^2*O(x^N) +y^2*O(y^N)) ); }
    {a(n) = polcoeff( polcoeff( P, n, x), n, y)}
    for(n=0, N, print1( a(n), ", ") )

Formula

a(n) ~ c * 4^n / sqrt(n), where c = 1/(sqrt(Pi) * QPochhammer(1/4)) = 0.819402796697705077405540985476846791094716961849197... - Vaclav Kotesovec, Jun 18 2019, updated Mar 17 2024

A382979 a(n) = [(x*y)^n] Product_{k>=1} 1/(1 - x^k + y^k).

Original entry on oeis.org

1, -2, 4, -20, 78, -282, 1048, -4014, 15456, -59224, 227646, -879694, 3407730, -13219372, 51375286, -200021556, 779870542, -3044448644, 11898709560, -46553635346, 182315752476, -714619687038, 2803342734160, -11005274516610, 43233909672938, -169951684067602, 668474115081988
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2025

Keywords

Crossrefs

Main diagonal of A382974.

Programs

  • Magma
    nmax := 26; prec := 2*nmax + 10; Rx := PowerSeriesRing(Rationals(), prec); Rxy := PowerSeriesRing(Rx, prec); P := Rxy!1; for k in [1..prec] do P *:= 1/(1 - x^k + y^k); end for; seq := [Coefficient(Coefficient(P, n), n) : n in [0..nmax]]; print seq; // Vincenzo Librandi, Apr 12 2025
  • Mathematica
    a[n_]:=SeriesCoefficient[Product[1/(1-x^k+y^k),{k,1,n+5}],{x,0,n},{y,0,n}]; Table[a[n],{n,0,26}] (* Vincenzo Librandi, Apr 12 2025 *)

Formula

a(n) ~ (-1)^n * 4^n / (A100221 * sqrt(Pi*n)). - Vaclav Kotesovec, Apr 13 2025

A382947 a(n) = [(x*y)^n] Product_{k>=1} 1 / (1 - x^k - y^k)^k.

Original entry on oeis.org

1, 2, 16, 78, 426, 1940, 9300, 40530, 177940, 749788, 3137352, 12865488, 52425432, 211336062, 848099898, 3385259588, 13475690578, 53504526568, 212146065506, 840218845230, 3325872415258, 13159945010474, 52064974607244, 205979887425498, 814961759722486
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k - y^k)^k, {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 24}]

Formula

a(n) ~ c * 4^n / sqrt(n), where c = 19.59922592... - Vaclav Kotesovec, Apr 11 2025

A382949 a(n) = [(x*y)^n] Product_{k>=1} 1 / (1 - x^k - y^k)^n.

Original entry on oeis.org

1, 2, 48, 1190, 33648, 996292, 30626316, 965163166, 30995087312, 1009925740946, 33289934968618, 1107728567917028, 37149902553751260, 1254165186821008126, 42580296599191705276, 1452739684287637542640, 49776378699192072523920, 1711962807156690517057454
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k - y^k)^n, {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 17}]

Formula

a(n) ~ c * d^n / n, where d = 36.5023860624117446261380818... and c = 0.08167564464819257818345... - Vaclav Kotesovec, Apr 10 2025

A382958 a(n) = (n!)^2 * [(x*y)^n] Product_{k>=1} 1 / (1 - (x^k + y^k)/k!).

Original entry on oeis.org

1, 2, 30, 920, 53078, 4828892, 643086588, 117718532696, 28378716172822, 8713799596723484, 3320414836230009080, 1537509304647364575716, 850310874146059999520372, 553587598414859641796343780, 419087377790397643526857611312, 365040505934072220586791778761920
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^2 SeriesCoefficient[Product[1/(1 - (x^k + y^k)/k!), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 15}]

Formula

a(n) ~ c * sqrt(Pi) * 2^(2*n + 1) * n^(2*n + 1/2) / exp(2*n), where c = Product_{k>=2} (1 + 1/(2^(k-1)*k! - 1)) = 1.399382837233736726730568376611759424994992988... - Vaclav Kotesovec, Apr 24 2025
Showing 1-9 of 9 results.