A258749 Decimal expansion of Ls_3(Pi), the value of the 3rd basic generalized log-sine integral at Pi (negated).
2, 5, 8, 3, 8, 5, 6, 3, 9, 0, 0, 2, 4, 9, 8, 5, 0, 1, 4, 6, 2, 3, 0, 2, 6, 2, 5, 5, 5, 9, 1, 7, 8, 2, 9, 3, 3, 5, 1, 8, 7, 7, 4, 0, 4, 7, 1, 5, 7, 0, 9, 2, 3, 0, 7, 8, 4, 5, 3, 7, 8, 1, 7, 5, 3, 1, 7, 1, 9, 9, 5, 7, 6, 4, 5, 5, 4, 7, 5, 5, 0, 3, 1, 3, 0, 5, 5, 8, 4, 1, 9, 3, 8, 3, 5, 7, 3, 8, 4, 9, 4, 1, 9
Offset: 1
Examples
-2.5838563900249850146230262555917829335187740471570923078453781753171...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Jonathan M. Borwein, Armin Straub, Special Values of Generalized Log-sine Integrals.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Magma
R:= RealField(100); -Pi(R)^3/12; // G. C. Greubel, Aug 23 2018
-
Mathematica
RealDigits[-Pi^3/12, 10, 103] // First
-
PARI
-Pi^3/12 \\ G. C. Greubel, Aug 23 2018
Formula
-Integral_{0..Pi} log(2*sin(t/2))^2 dx = -Pi^3/12.
Also equals 2nd derivative of -Pi*binomial(x, x/2) at x=0.
It can be noticed that Ls_2(Pi) is 0, and that Ls_2(Pi/2) is Catalan's constant 0.915966... (A006752).