cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258806 a(n) = n^7 + 1.

Original entry on oeis.org

1, 2, 129, 2188, 16385, 78126, 279937, 823544, 2097153, 4782970, 10000001, 19487172, 35831809, 62748518, 105413505, 170859376, 268435457, 410338674, 612220033, 893871740, 1280000001, 1801088542, 2494357889, 3404825448, 4586471425, 6103515626, 8031810177
Offset: 0

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A004864.
Sequences of the type n^k+1: A002522 (k=2), A001093 (k=3), A002523 (k=4), A002561 (k=5), A002604 (k=6), this sequence (k=7), A060890 (k=8).
Cf. A300785.

Programs

  • GAP
    List([0..30],n->n^7+1); # Muniru A Asiru, Oct 24 2018
  • Magma
    [n^7+1: n in [0..40]];
    
  • Magma
    I:=[1,2,129,2188, 16385,78126,279937,823544]; [n le 8 select I[n] else 8*Self(n-1) - 28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5) -28*Self(n-6) + 8*Self(n-7)-Self(n-8): n in [1..40]];
    
  • Maple
    seq(n^7+1,n=0..30); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Table[n^7 + 1, {n, 0, 40}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 2, 129, 2188, 16385, 78126, 279937, 823544}, 40]
  • PARI
    a(n)=n^7+1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [n^7+1 for n in (1..40)] # Bruno Berselli, Jun 11 2015
    

Formula

G.f.: (1 - 6*x + 141*x^2 + 1156*x^3 + 2451*x^4 + 1170*x^5 + 127*x^6)/(1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
a(n) = (n + 1)*(n^6 - n^5 + n^4 - n^3 + n^2 - n + 1).
a(n) = Sum_{k=0..n} A300785(n,k). - Kolosov Petro, Oct 23 2018
E.g.f.: (1 +x +63*x^2 +301*x^3 +350*x^4 +140*x^5 +*21*x^6 +x^7)*exp(x). - G. C. Greubel, Oct 24 2018