cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121444 Expansion of f(x^3, x^9) * f(x, x^2) in powers of x where f(, ) is Ramanujan's general theta functions.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 3, 0, 1, 1, 0, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 0, 3, 0, 0, 1, 1, 2, 1, 1, 1, 1, 3, 1, 0, 1, 0, 2, 0, 1, 1, 1, 2, 1, 0, 0, 1, 3, 2
Offset: 0

Views

Author

Michael Somos, Jul 30 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + x^7 + x^8 + x^9 + 2*x^10 + x^11 + ...
G.f. = q^5 + q^17 + q^29 + q^41 + q^53 + 2*q^65 + q^89 + q^101 + q^113 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, Sum[ I^d, {d, Divisors[12 n + 5]}] / (2 I)]; (* Michael Somos, Jul 25 2015 *)
    a[ n_] := SeriesCoefficient[ 2 x^(3/8) QPochhammer[ x^6]^3 / (QPochhammer[ x, x^2] EllipticTheta[ 2, 0, x^(3/2)]), {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
    a[ n_] := Length @ FindInstance[ 24 n + 10 == (6 j + 3)^2 + (6 k + 1)^2 && j >= 0, {j, k}, Integers, 10^9]; (* Michael Somos, Jul 02 2015 *)
    a[ n_] := If[ n < 0, 0, DivisorSum[ 12 n + 5, KroneckerSymbol[ -4, #] &] / 2]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := If[ n < 0, 0, Sum[ Boole[ Mod[d, 4] == 1] - Boole[ Mod[d, 4] == 3], {d, Divisors[12 n + 5]}] / 2]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ x^3] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x + A), n))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 12*n + 5; sumdiv(n, d, (d%4==1) - (d%4==3)) / 2)};

Formula

Expansion of f(-x^3) * f(-x^6) / chi(-x) in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of q^(-5/12) * eta(q^2) * eta(q^3) * eta(q^6) / eta(q) in powers of q.
Euler transform of period 6 sequence [ 1, 0, 0, 0, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258210.
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(6*k)).
-2 * a(n) = A121363(3*n + 1).
Convolution square is A098098.
a(n) = (-1)^n * A258832(n) = A052343(3*n + 1). -a(n) = A258291(3*n + 1). 2 * a(n) = A008441(3*n + 1). - Michael Somos, Jul 02 2015
From Peter Bala, Jan 07 2021: (Start)
G.f. A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(12*n + 5)). See Agarwal, p. 285, equation 6.19.
A(x^2) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(12*n + 5)). Cf. A033761. (End)

A258831 Expansion of (psi(-x^3) * f(-x, x^2))^2 in powers of x where psi(), f(,) are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 3, -4, 5, -8, 7, -8, 9, -10, 14, -12, 16, -14, 15, -20, 17, -18, 19, -24, 26, -22, 23, -28, 25, -32, 32, -28, 29, -30, 38, -32, 33, -40, 40, -44, 42, -38, 39, -40, 57, -42, 43, -44, 45, -62, 47, -56, 49, -56, 62, -52, 53, -60, 64, -68, 64, -58, 59, -60
Offset: 0

Views

Author

Michael Somos, Jun 11 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 3*x^2 - 4*x^3 + 5*x^4 - 8*x^5 + 7*x^6 - 8*x^7 + 9*x^8 + ...
G.f. = q^5 - 2*q^11 + 3*q^17 - 4*q^23 + 5*q^29 - 8*q^35 + 7*q^41 - 8*q^47 + ...
		

Crossrefs

Programs

  • GAP
    List([0..70], n -> (-1)^n*Sigma(6*n+5)/6); # Muniru A Asiru, Jan 30 2018
    
  • Magma
    [(-1)^n*SumOfDivisors(6*n+5)/6: n in [0..70]]; // Vincenzo Librandi, Jan 30 2018
  • Maple
    with(numtheory):
    seq((-1)^(n-1)*sigma(6*n - 1)/6, n=1..10^3); # Muniru A Asiru, Jan 30 2018
  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSigma[ 1, 6 n + 5] / 6];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^6]^2 QPochhammer[ x, -x] / QPochhammer[ x^3, -x^3])^2, {x, 0, n}];
    Table[(-1)^n DivisorSigma[1, 6 n + 5] / 6, {n, 0, 60}] (* Vincenzo Librandi, Jan 30 2018 *)
  • PARI
    {a(n) = if(n<0, 0, (-1)^n*sigma(6*n+5)/6)};
    
  • PARI
    {a(n) = my(A); if(n<0, 0, A = x*O(x^n); polcoeff((eta(x + A)*eta(x^4 + A)*eta(x^6 + A)^4/(eta(x^2+A)^2*eta(x^3+A)*eta(x^12+A)))^2, n))};
    

Formula

Expansion of (f(-x^6)^2 * chi(x^3) / chi(x))^2 in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of q^(-5/6) * (eta(q) * eta(q^4) * eta(q^6)^4 / (eta(q^2)^2 * eta(q^3) * eta(q^12)))^2 in powers of q.
Euler transform of period 12 sequence [-2, 2, 0, 0, -2, -4, -2, 0, 0, 2, -2, -4, ...].
a(n) = (-1)^n * A098098(n) = A208435(2*n + 1) = A208457(2*n + 1). 6 * a(n) = A121613(3*n + 2).
Convolution square of A258832.
Showing 1-2 of 2 results.