cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258978 a(n) = 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4.

Original entry on oeis.org

5, 121, 341, 2801, 1555, 22621, 4681, 54241, 30941, 111151, 22621, 637421, 41371, 346201, 346201, 954305, 111151, 2374321, 168421, 3187591, 1082401, 1727605, 346201, 13179661, 954305, 3187591, 2625641, 10013305, 837931, 27252361, 1082401, 16007041, 5421361
Offset: 1

Views

Author

Robert Price, Jun 15 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A258979 (indices of primes in this sequence), A258980 (corresponding primes).

Programs

  • Magma
    [(1 + DivisorSigma(1, n) + DivisorSigma(1, n)^2 + DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4): n in [1..35]]; // Vincenzo Librandi, Jun 16 2015
    
  • Maple
    with(numtheory): A258978:=n->1+sigma(n)+sigma(n)^2+sigma(n)^3+sigma(n)^4: seq(A258978(n), n=1..40); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4, {n, 10000}]
    Table[Cyclotomic[5, DivisorSigma[1, n]], {n, 10000}]
    Total/@Table[DivisorSigma[1,n]^ex,{n,40},{ex,0,4}] (* Harvey P. Dale, Jun 24 2017 *)
  • PARI
    vector(50, n, polcyclo(6, sigma(n))) \\ Michel Marcus, Jun 25 2015

Formula

a(n) = 1 + A000203(n) + A000203(n)^2 + A000203(n)^3 + A000203(n)^4.
a(n) = A053699(A000203(n)). - Michel Marcus, Jun 25 2015