A259060 Numbers that are representable in at least two ways as sums of four distinct nonvanishing cubes.
6426, 7900, 9614, 11592, 13858, 16436, 19350, 22624, 26282, 30348, 34846, 39800, 45234, 51172, 57638, 64656, 72250, 80444, 89262, 98728, 108866, 119700, 131254, 143552, 156618, 170476, 185150, 200664, 217042, 234308, 252486, 271600, 291674
Offset: 0
Examples
a(0) = 6426 = 1^3 + 8^3 + 10^3 + 17^3 = 2^3 + 5^3 + 13^3 + 16^3. a(1) = 7900 = 2^3 + 9^3 + 11^3 + 18^3 = 3^3 + 6^3 + 14^3 + 17^3.
References
- W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(2*(n+9))*(2*n^2+36*n+357): n in [0..50]]; // Vincenzo Librandi, Aug 13 2015
-
Magma
I:=[6426,7900,9614,11592]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
-
Mathematica
CoefficientList[Series[2 (3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *) LinearRecurrence[{4,-6,4,-1},{6426,7900,9614,11592},40] (* Harvey P. Dale, Sep 30 2016 *)
Formula
a(n) = (2*(n+9))*(2*n^2+36*n+357) = 2*A261241(n), n >= 0. See the comment for the sum of four distinct cubes in two different ways.
O.g.f.: 2*(3213 - 8902*x + 8285*x^2 - 2584*x^3) / (1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Aug 13 2015
Comments