cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259060 Numbers that are representable in at least two ways as sums of four distinct nonvanishing cubes.

Original entry on oeis.org

6426, 7900, 9614, 11592, 13858, 16436, 19350, 22624, 26282, 30348, 34846, 39800, 45234, 51172, 57638, 64656, 72250, 80444, 89262, 98728, 108866, 119700, 131254, 143552, 156618, 170476, 185150, 200664, 217042, 234308, 252486, 271600, 291674
Offset: 0

Views

Author

Wolfdieter Lang, Aug 12 2015

Keywords

Comments

This is the second part of Exercise 229 in Sierpiński's problem book. See p. 20, and p. 110 for the solution. He uses the identity (n-8)^3 + (n-1)^3 + (n+1)^3 + (n+8)^3 = 4*n^3 + 390 = (n-7)^3 + (n-4)^3 + (n+4)^3 + (n+7)^3, for n >= 9.
Here n is replaced by n + 9: (n+1)^3 + (n+8)^3 + (n+10)^3 + (n+17)^3 = 4*n^3 + 108*n^2 + 1362*n + 6426 = (n+2)^3 + (n+5)^3 + (n+13)^3 + (n+16)^3, for n >= 0.
There may be other numbers with this properties.
Because the summands have no common factor > 1 each of these two representations is called primitive. - Wolfdieter Lang, Aug 20 2015

Examples

			a(0) = 6426 = 1^3 + 8^3 + 10^3 + 17^3 = 2^3 + 5^3 + 13^3 + 16^3.
a(1) = 7900 = 2^3 + 9^3 + 11^3 + 18^3 = 3^3 + 6^3 + 14^3 + 17^3.
		

References

  • W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970.

Crossrefs

Cf. A261241, A259058 (squares).

Programs

  • Magma
    [(2*(n+9))*(2*n^2+36*n+357): n in [0..50]]; // Vincenzo Librandi, Aug 13 2015
    
  • Magma
    I:=[6426,7900,9614,11592]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
  • Mathematica
    CoefficientList[Series[2 (3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *)
    LinearRecurrence[{4,-6,4,-1},{6426,7900,9614,11592},40] (* Harvey P. Dale, Sep 30 2016 *)

Formula

a(n) = (2*(n+9))*(2*n^2+36*n+357) = 2*A261241(n), n >= 0. See the comment for the sum of four distinct cubes in two different ways.
O.g.f.: 2*(3213 - 8902*x + 8285*x^2 - 2584*x^3) / (1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Aug 13 2015