cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259318 a(n) = A259109(n)*A006331(n) - A259108(n)^2.

Original entry on oeis.org

0, 0, 144, 6048, 85536, 679536, 3747744, 16039296, 56930688, 174978144, 479700144, 1198248480, 2770653600, 6002352720, 12298837824, 24014605824, 44957265408, 81097765056, 141549364944, 239891292576, 395928108576, 637992775728, 1005920381664, 1554840524160
Offset: 0

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Examples

			n=3: 6048 = 1588*28 - 196^2.
		

Crossrefs

Programs

  • PARI
    concat([0,0], Vec(-144*x^2*(x^6+31*x^5+187*x^4+330*x^3+187*x^2 +31*x+1)/(x-1)^11 + O(x^100))) \\ Colin Barker, Jun 29 2015

Formula

a(n) = (16*n^10+80*n^9+120*n^8-147*n^6-105*n^5+5*n^4+25*n^3+6*n^2)/525. - Colin Barker, Jun 29 2015
G.f.: -144*x^2*(x^6+31*x^5+187*x^4+330*x^3+187*x^2+31*x+1) / (x-1)^11. - Colin Barker, Jun 29 2015

A323542 a(n) = Product_{k=0..n} (k^4 + (n-k)^4).

Original entry on oeis.org

0, 1, 512, 1896129, 14101250048, 242755875390625, 7888809923487203328, 452522453429009743939201, 42521926771106843499966758912, 6212193882217859346149080691430849, 1350441156698962215630405632000000000000, 421551664651621436548685508587919503984205889
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000538 and A259108 (with sum instead of product).

Programs

  • Magma
    [(&*[(k^4 + (n-k)^4): k in [0..n]]): n in [0..15]]; // Vincenzo Librandi, Jan 18 2019
    
  • Mathematica
    Table[Product[k^4+(n-k)^4, {k, 0, n}], {n, 0, 15}]
  • PARI
    m=4; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=4; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp((Pi*(sqrt(2) - 1/2) - 4)*n) * n^(4*n + 4).

A259317 a(n) = 2*(2*n+1)*A000538(n) - 4*A000330(n)^2.

Original entry on oeis.org

0, 2, 70, 588, 2772, 9438, 26026, 61880, 131784, 257754, 471086, 814660, 1345500, 2137590, 3284946, 4904944, 7141904, 10170930, 14202006, 19484348, 26311012, 35023758, 46018170, 59749032, 76735960, 97569290, 122916222, 153527220, 190242668, 233999782
Offset: 0

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Examples

			n=3: 588 = 2*7*92-4*14^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,2,70,588,2772,9438,26026},30] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    concat(0, Vec(-2*x*(x^4+28*x^3+70*x^2+28*x+1)/(x-1)^7 + O(x^100))) \\ Colin Barker, Jun 28 2015
    
  • Python
    def A259317(n): return n*(n*(n**2*(n*(16*n + 48) + 40) - 11) - 3)//45 # Chai Wah Wu, Dec 07 2021

Formula

Also a(n) = (2*n+1)*A259108(n) - A006331(n)^2.
a(n) = (n*(1+2*n)^2*(-3+n+8*n^2+4*n^3))/45. - Colin Barker, Jun 28 2015
G.f.: -2*x*(x^4+28*x^3+70*x^2+28*x+1) / (x-1)^7. - Colin Barker, Jun 28 2015
Showing 1-3 of 3 results.